Abstract

This paper discusses advances in the fabrication, operation, and performance of the Itek PROM (Pockels readout optical modulator). Devices of high optical quality have been made and evaluated. Measurements of MTF and sensitivity under various conditions are presented. Stored images can be enhanced in contrast by a change in device voltage and the same method used to suppress the zero order in Fraunhofer diffraction patterns of such images. The results of this technique are demonstrated.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Vohl, P. Nisenson, D. S. Oliver, IEEE Trans. Electron Devices ED-20, 1023 (1973); P. Nisenson, S. Iwasa, Appl. Opt. 11, 2760 (1972); J. Feinleib, D. S. Oliver, Appl. Opt. 11, 2752 (1972); S. L. Hou, D. S. Oliver, Appl. Phys. Lett. 18, 25 (1971); S. Iwasa, J. Feinleib, Optical Engineering, to be published.
    [CrossRef] [PubMed]
  2. Manufactured by the Union Carbide Corporation.
  3. A. Feldman, W. S. Brower, D. Horowitz, Appl. Phys. Lett. 16, 201 (1970).
    [CrossRef]
  4. E. L. Venturini, E. G. Spencer, A. A. Ballman, J. Appl. Phys. 140, 1622 (1971).
  5. R. Sprague, P. Vohl, O.S.A. Fall Meeting, October 1972 (WV14). A paper is shortly to be submitted for publication.
  6. G. Groh, G. Mane, Opt. Commun. 2, 133 (1970).
    [CrossRef]
  7. J. Donjon, F. Dumont, M. Grenot, J. P. Hazan, G. Marie, J. Pergrale, IEEE Trans. Electron Devices ED-20, 1037 (1973).
    [CrossRef]
  8. R. J. King, S. P. Talim, J. Phys. E. 4, 93 (1971).
    [CrossRef]
  9. J. C. Urbach, R. W. Meier, Appl. Opt. 8, 2269 (1969).
    [CrossRef] [PubMed]
  10. A. Labeyrie, Astron. Astrophys. 6, 85 (1970); D. Y. Gezari, A. Labeyrie, R. V. Stachnik, Astrophys. J. 173, L1 (1972).
    [CrossRef]

1973 (2)

P. Vohl, P. Nisenson, D. S. Oliver, IEEE Trans. Electron Devices ED-20, 1023 (1973); P. Nisenson, S. Iwasa, Appl. Opt. 11, 2760 (1972); J. Feinleib, D. S. Oliver, Appl. Opt. 11, 2752 (1972); S. L. Hou, D. S. Oliver, Appl. Phys. Lett. 18, 25 (1971); S. Iwasa, J. Feinleib, Optical Engineering, to be published.
[CrossRef] [PubMed]

J. Donjon, F. Dumont, M. Grenot, J. P. Hazan, G. Marie, J. Pergrale, IEEE Trans. Electron Devices ED-20, 1037 (1973).
[CrossRef]

1971 (2)

R. J. King, S. P. Talim, J. Phys. E. 4, 93 (1971).
[CrossRef]

E. L. Venturini, E. G. Spencer, A. A. Ballman, J. Appl. Phys. 140, 1622 (1971).

1970 (3)

G. Groh, G. Mane, Opt. Commun. 2, 133 (1970).
[CrossRef]

A. Feldman, W. S. Brower, D. Horowitz, Appl. Phys. Lett. 16, 201 (1970).
[CrossRef]

A. Labeyrie, Astron. Astrophys. 6, 85 (1970); D. Y. Gezari, A. Labeyrie, R. V. Stachnik, Astrophys. J. 173, L1 (1972).
[CrossRef]

1969 (1)

Ballman, A. A.

E. L. Venturini, E. G. Spencer, A. A. Ballman, J. Appl. Phys. 140, 1622 (1971).

Brower, W. S.

A. Feldman, W. S. Brower, D. Horowitz, Appl. Phys. Lett. 16, 201 (1970).
[CrossRef]

Donjon, J.

J. Donjon, F. Dumont, M. Grenot, J. P. Hazan, G. Marie, J. Pergrale, IEEE Trans. Electron Devices ED-20, 1037 (1973).
[CrossRef]

Dumont, F.

J. Donjon, F. Dumont, M. Grenot, J. P. Hazan, G. Marie, J. Pergrale, IEEE Trans. Electron Devices ED-20, 1037 (1973).
[CrossRef]

Feldman, A.

A. Feldman, W. S. Brower, D. Horowitz, Appl. Phys. Lett. 16, 201 (1970).
[CrossRef]

Grenot, M.

J. Donjon, F. Dumont, M. Grenot, J. P. Hazan, G. Marie, J. Pergrale, IEEE Trans. Electron Devices ED-20, 1037 (1973).
[CrossRef]

Groh, G.

G. Groh, G. Mane, Opt. Commun. 2, 133 (1970).
[CrossRef]

Hazan, J. P.

J. Donjon, F. Dumont, M. Grenot, J. P. Hazan, G. Marie, J. Pergrale, IEEE Trans. Electron Devices ED-20, 1037 (1973).
[CrossRef]

Horowitz, D.

A. Feldman, W. S. Brower, D. Horowitz, Appl. Phys. Lett. 16, 201 (1970).
[CrossRef]

King, R. J.

R. J. King, S. P. Talim, J. Phys. E. 4, 93 (1971).
[CrossRef]

Labeyrie, A.

A. Labeyrie, Astron. Astrophys. 6, 85 (1970); D. Y. Gezari, A. Labeyrie, R. V. Stachnik, Astrophys. J. 173, L1 (1972).
[CrossRef]

Mane, G.

G. Groh, G. Mane, Opt. Commun. 2, 133 (1970).
[CrossRef]

Marie, G.

J. Donjon, F. Dumont, M. Grenot, J. P. Hazan, G. Marie, J. Pergrale, IEEE Trans. Electron Devices ED-20, 1037 (1973).
[CrossRef]

Meier, R. W.

Nisenson, P.

P. Vohl, P. Nisenson, D. S. Oliver, IEEE Trans. Electron Devices ED-20, 1023 (1973); P. Nisenson, S. Iwasa, Appl. Opt. 11, 2760 (1972); J. Feinleib, D. S. Oliver, Appl. Opt. 11, 2752 (1972); S. L. Hou, D. S. Oliver, Appl. Phys. Lett. 18, 25 (1971); S. Iwasa, J. Feinleib, Optical Engineering, to be published.
[CrossRef] [PubMed]

Oliver, D. S.

P. Vohl, P. Nisenson, D. S. Oliver, IEEE Trans. Electron Devices ED-20, 1023 (1973); P. Nisenson, S. Iwasa, Appl. Opt. 11, 2760 (1972); J. Feinleib, D. S. Oliver, Appl. Opt. 11, 2752 (1972); S. L. Hou, D. S. Oliver, Appl. Phys. Lett. 18, 25 (1971); S. Iwasa, J. Feinleib, Optical Engineering, to be published.
[CrossRef] [PubMed]

Pergrale, J.

J. Donjon, F. Dumont, M. Grenot, J. P. Hazan, G. Marie, J. Pergrale, IEEE Trans. Electron Devices ED-20, 1037 (1973).
[CrossRef]

Spencer, E. G.

E. L. Venturini, E. G. Spencer, A. A. Ballman, J. Appl. Phys. 140, 1622 (1971).

Sprague, R.

R. Sprague, P. Vohl, O.S.A. Fall Meeting, October 1972 (WV14). A paper is shortly to be submitted for publication.

Talim, S. P.

R. J. King, S. P. Talim, J. Phys. E. 4, 93 (1971).
[CrossRef]

Urbach, J. C.

Venturini, E. L.

E. L. Venturini, E. G. Spencer, A. A. Ballman, J. Appl. Phys. 140, 1622 (1971).

Vohl, P.

P. Vohl, P. Nisenson, D. S. Oliver, IEEE Trans. Electron Devices ED-20, 1023 (1973); P. Nisenson, S. Iwasa, Appl. Opt. 11, 2760 (1972); J. Feinleib, D. S. Oliver, Appl. Opt. 11, 2752 (1972); S. L. Hou, D. S. Oliver, Appl. Phys. Lett. 18, 25 (1971); S. Iwasa, J. Feinleib, Optical Engineering, to be published.
[CrossRef] [PubMed]

R. Sprague, P. Vohl, O.S.A. Fall Meeting, October 1972 (WV14). A paper is shortly to be submitted for publication.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Feldman, W. S. Brower, D. Horowitz, Appl. Phys. Lett. 16, 201 (1970).
[CrossRef]

Astron. Astrophys. (1)

A. Labeyrie, Astron. Astrophys. 6, 85 (1970); D. Y. Gezari, A. Labeyrie, R. V. Stachnik, Astrophys. J. 173, L1 (1972).
[CrossRef]

IEEE Trans. Electron Devices (2)

J. Donjon, F. Dumont, M. Grenot, J. P. Hazan, G. Marie, J. Pergrale, IEEE Trans. Electron Devices ED-20, 1037 (1973).
[CrossRef]

P. Vohl, P. Nisenson, D. S. Oliver, IEEE Trans. Electron Devices ED-20, 1023 (1973); P. Nisenson, S. Iwasa, Appl. Opt. 11, 2760 (1972); J. Feinleib, D. S. Oliver, Appl. Opt. 11, 2752 (1972); S. L. Hou, D. S. Oliver, Appl. Phys. Lett. 18, 25 (1971); S. Iwasa, J. Feinleib, Optical Engineering, to be published.
[CrossRef] [PubMed]

J. Appl. Phys. (1)

E. L. Venturini, E. G. Spencer, A. A. Ballman, J. Appl. Phys. 140, 1622 (1971).

J. Phys. E. (1)

R. J. King, S. P. Talim, J. Phys. E. 4, 93 (1971).
[CrossRef]

Opt. Commun. (1)

G. Groh, G. Mane, Opt. Commun. 2, 133 (1970).
[CrossRef]

Other (2)

R. Sprague, P. Vohl, O.S.A. Fall Meeting, October 1972 (WV14). A paper is shortly to be submitted for publication.

Manufactured by the Union Carbide Corporation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The voltage cycle used to operate the PROM: (a) application of V0; (b) erasing flash; (c) reversal of V0; (d) exposure and negative readout; (e) positive readout; (f) baseline subtraction.

Fig. 2
Fig. 2

One of the latest devices: (a) interferogram of readout wavefront; (b) electron micrograph of a polished low-scattering surface; (c) the finished device.

Fig. 3
Fig. 3

Optical system for holographic correction. A, collimated light from He–Ne laser polarized at about 45° to plane of diagram; B, polarizing beam splitter; C, analyzer; D, observation point in aligning triangular interferometer; S, shutter that is closed when recording the hologram, open when using the corrected PROM; T, shutter that is opened to record the hologram, closed otherwise; M, after recording the hologram, mirror M can be removed.

Fig. 4
Fig. 4

Image reversal and contouring and level slicing: (a) positive image; (b) negative image; (c) image with an intensity contour; (d), (e), (f) intensity level slicing for several baseline settings.

Fig. 5
Fig. 5

Diffraction spectra of a checkerboard transmission target stored on PROM’s: (a), (b) central orders with incorrect and correct baseline subtraction; (c), (d) exposures of (a) and (b) showing higher orders; (e) spectrum observed with a heavy exposure on the PROM. Note: (a)–(d) used a holographically corrected PROM with a cylindrical lens to compensate bending—hence the difference in scale between x and y axes. (e) used a better quality PROM without correction.

Fig. 6
Fig. 6

Sensitivity as a function of recording wavelength.

Fig. 7
Fig. 7

Exposure energy and γ as a function of recording wavelength.

Fig. 8
Fig. 8

Apparatus used to measure the MTF.

Fig. 9
Fig. 9

PROM MTF for two exposure energies.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n f , s = n 0 ± α E .
A = A 0 sin [ ( π V ) / ( 2 V h ) ] .
V = 2 V 0 exp ( E / E 0 ) ,
D 1 16 ( MTF ) 2 .

Metrics