Abstract

The random phase sampling method that has been proposed to make high quality and high storage density holograms capable of storing image information is described and discussed from the aspect of the quantitative characteristics of its reconstructed image. The method enables the uniform distribution of light energy over the hologram area made on the exact Fourier transformed plane. The details of the characteristics of the method are investigated, especially with respect to the luminance tone linearity, the signal-to-noise ratio, and the resolution to give good agreement with the results of a calculation. In the experiment, reconstructed images with high quality were obtained from holograms of 2-mm diam which were made by 106 sampling and random phase shifting. By using the random phase sampling method, an image retrieval model system storing twenty kinds information was developed. This system holds promise of being used in various practical applications such as holographic ultramicrofilm system or a holographic videopackage system.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Takeda, Japan. J. Appl. Phys. 11, 656 (1972).
    [CrossRef]
  2. H. J. Gerritsen, W. J. Hannan, E. G. Ramberg, Appl. Opt. 7, 2301 (1968).
    [CrossRef] [PubMed]
  3. A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. Lurie, RCA Rev. 33, 131 (1972).
  4. C. B. Burckhardt, Appl. Opt. 9, 695 (1970).
    [CrossRef] [PubMed]
  5. Y. Takeda, Y. Oshida, Y. Miyamura, Appl. Opt. 11, 818 (1972).
    [CrossRef] [PubMed]
  6. W. C. Stewart, A. H. Firester, E. C. Fox, Appl. Opt. 11, 604 (1972).
    [CrossRef] [PubMed]
  7. Y. Tsunoda, Y. Takeda, J. Appl. Phys. 44, 2422 (1973).
    [CrossRef]
  8. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic Press, New York, 1971), p. 543.
  9. M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1970), p 395.
  10. Y. Takeda et al., Oyo Butsuri 40, 41 (1971).
  11. Exhibit Guide of the 1st U.S.A.–Japan Computer Conference Exhibition (1972).

1973

Y. Tsunoda, Y. Takeda, J. Appl. Phys. 44, 2422 (1973).
[CrossRef]

1972

Y. Takeda, Y. Oshida, Y. Miyamura, Appl. Opt. 11, 818 (1972).
[CrossRef] [PubMed]

W. C. Stewart, A. H. Firester, E. C. Fox, Appl. Opt. 11, 604 (1972).
[CrossRef] [PubMed]

Y. Takeda, Japan. J. Appl. Phys. 11, 656 (1972).
[CrossRef]

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. Lurie, RCA Rev. 33, 131 (1972).

1971

Y. Takeda et al., Oyo Butsuri 40, 41 (1971).

1970

1968

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1970), p 395.

Burckhardt, C. B.

C. B. Burckhardt, Appl. Opt. 9, 695 (1970).
[CrossRef] [PubMed]

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic Press, New York, 1971), p. 543.

Collier, R. J.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic Press, New York, 1971), p. 543.

Firester, A. H.

W. C. Stewart, A. H. Firester, E. C. Fox, Appl. Opt. 11, 604 (1972).
[CrossRef] [PubMed]

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. Lurie, RCA Rev. 33, 131 (1972).

Fox, E. C.

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. Lurie, RCA Rev. 33, 131 (1972).

W. C. Stewart, A. H. Firester, E. C. Fox, Appl. Opt. 11, 604 (1972).
[CrossRef] [PubMed]

Gayeski, T.

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. Lurie, RCA Rev. 33, 131 (1972).

Gerritsen, H. J.

Hannan, W. J.

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. Lurie, RCA Rev. 33, 131 (1972).

H. J. Gerritsen, W. J. Hannan, E. G. Ramberg, Appl. Opt. 7, 2301 (1968).
[CrossRef] [PubMed]

Lin, L. H.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic Press, New York, 1971), p. 543.

Lurie, M.

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. Lurie, RCA Rev. 33, 131 (1972).

Miyamura, Y.

Oshida, Y.

Ramberg, E. G.

Stewart, W. C.

Takeda, Y.

Y. Tsunoda, Y. Takeda, J. Appl. Phys. 44, 2422 (1973).
[CrossRef]

Y. Takeda, Japan. J. Appl. Phys. 11, 656 (1972).
[CrossRef]

Y. Takeda, Y. Oshida, Y. Miyamura, Appl. Opt. 11, 818 (1972).
[CrossRef] [PubMed]

Y. Takeda et al., Oyo Butsuri 40, 41 (1971).

Tsunoda, Y.

Y. Tsunoda, Y. Takeda, J. Appl. Phys. 44, 2422 (1973).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1970), p 395.

Appl. Opt.

J. Appl. Phys.

Y. Tsunoda, Y. Takeda, J. Appl. Phys. 44, 2422 (1973).
[CrossRef]

Japan. J. Appl. Phys.

Y. Takeda, Japan. J. Appl. Phys. 11, 656 (1972).
[CrossRef]

Oyo Butsuri

Y. Takeda et al., Oyo Butsuri 40, 41 (1971).

RCA Rev.

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. Lurie, RCA Rev. 33, 131 (1972).

Other

Exhibit Guide of the 1st U.S.A.–Japan Computer Conference Exhibition (1972).

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic Press, New York, 1971), p. 543.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1970), p 395.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Basic concept of the random phase sampling method.

Fig. 2
Fig. 2

Distribution of light energy on the hologram plane.

Fig. 3
Fig. 3

Original and reconstructed images. (a) Original image; (b) reconstructed image (106 sampling), hologram size, 2 mm.

Fig. 4
Fig. 4

Reconstructed images from holograms (106 sampling). (a) Original size; (b) enlarged size.

Fig. 5
Fig. 5

Relation between diffraction efficiency and beam intensity ratio.

Fig. 6
Fig. 6

Relation between the optical densities of original and reconstructed images of gray scales.

Fig. 7
Fig. 7

Microphotograph of the intensity fluctuation of the reconstructed images. Top: Random phase sampling method: Bottom: speckle noise by a diffuser method.

Fig. 8
Fig. 8

Normalized intensity fluctuation F of the reconstructed images. (a) 106 random phase shifter with mesh; (b) 2.5 × 105 random phase shifter with mesh; (c) 2.5 × 105 random phase shifter without mesh.●, Speckle; ×, random phase sampling method.

Fig. 9
Fig. 9

Wiener spectra of (a) reconstructed image; (b) original image.

Fig. 10
Fig. 10

Resolution of the reconstructed image (106 sampling).

Fig. 11
Fig. 11

Scope of the minimodel image storage system.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F = [ A ( J ) A ] 2 A 2 ,

Metrics