Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Barker, Behavior of Dense Media under High Dynamic Pressures (Gordon and Breach, New York, 1968), p. 483.
  2. P. M. Johnson, T. J. Burgess, Rev. Sci. Instrum. 39, 1100 (1968).
    [CrossRef]
  3. R. J. Clifton, J. Appl. Phys. 41, 5335 (1970).
    [CrossRef]
  4. L. M. Barker, R. E. Hollenbach, Sandia Report SC-DC-72 2291.

1970 (1)

R. J. Clifton, J. Appl. Phys. 41, 5335 (1970).
[CrossRef]

1968 (1)

P. M. Johnson, T. J. Burgess, Rev. Sci. Instrum. 39, 1100 (1968).
[CrossRef]

Barker, L.

L. Barker, Behavior of Dense Media under High Dynamic Pressures (Gordon and Breach, New York, 1968), p. 483.

Barker, L. M.

L. M. Barker, R. E. Hollenbach, Sandia Report SC-DC-72 2291.

Burgess, T. J.

P. M. Johnson, T. J. Burgess, Rev. Sci. Instrum. 39, 1100 (1968).
[CrossRef]

Clifton, R. J.

R. J. Clifton, J. Appl. Phys. 41, 5335 (1970).
[CrossRef]

Hollenbach, R. E.

L. M. Barker, R. E. Hollenbach, Sandia Report SC-DC-72 2291.

Johnson, P. M.

P. M. Johnson, T. J. Burgess, Rev. Sci. Instrum. 39, 1100 (1968).
[CrossRef]

J. Appl. Phys. (1)

R. J. Clifton, J. Appl. Phys. 41, 5335 (1970).
[CrossRef]

Rev. Sci. Instrum. (1)

P. M. Johnson, T. J. Burgess, Rev. Sci. Instrum. 39, 1100 (1968).
[CrossRef]

Other (2)

L. Barker, Behavior of Dense Media under High Dynamic Pressures (Gordon and Breach, New York, 1968), p. 483.

L. M. Barker, R. E. Hollenbach, Sandia Report SC-DC-72 2291.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Laser Doppler interferometer.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

τ = ( x 2 x 1 ) / c .
ψ 1 = a exp i [ ω t t ( 2 π x 1 ) / λ t ] = a exp i [ 2 π ( c t x 1 ) λ o ( 1 2 U t / c ) ] ,
ψ 2 = a exp i { ω t τ t [ 2 π ( x 1 + τ c ) ] / λ t τ } = a exp i [ 2 π ( c t x 1 τ c ) λ o ( 1 2 U t τ / c ) ] .
λ t = λ o ( 1 2 U t / c ) , ω t = ( 2 π c ) / λ t , λ t τ = λ o ( 1 2 U t τ / c ) , ω t τ = ( 2 π c ) / λ t τ .
ψ = ψ 1 + ψ 2 .
I = ψ ψ * = ( ψ 1 + ψ 2 ) ( ψ 1 * + ψ 2 * ) = 4 a 2 cos 2 [ π ( c t x 1 ) λ o ( 1 2 U t / c ) π ( c t x 1 τ c ) λ o ( 1 2 U t τ / c ) ] .
I = A cos 2 { ϕ o + [ 2 π ( c t x 1 ) ( U t U t τ ) ] / λ o c + [ 2 π τ U t τ ] / λ o } .
I = A cos 2 { ϕ o + [ 2 π ( c t x 1 ) U t ] / ( λ o c ) } .
t = t 1 + τ = ( x 1 / c ) + τ ,
I = A cos 2 [ ϕ o + ( 2 π τ U t ) / λ o ] .
( 2 τ U τ ) / λ o 1
U τ / τ λ o / ( 2 τ 2 ) .

Metrics