Abstract

A new kind of null Ronchi test for aspherical surfaces is devised using a special ruling with curved lines. This test is found to be more advantageous for aspherical surfaces that the normal Ronchi test, which depends solely on computation to determine the shape of the fringes on the surface. The only restriction on this test is that a point source must be used.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Sherwood, J. Proc. Roy Soc. New South Wales 93, 19 (1959).
  2. D. Malacara, Appl. Opt. 4, 1371 (1965).
    [CrossRef]
  3. A. Cornejo, D. Malacara, Appl. Opt. 9, 1897 (1970).
    [PubMed]

1970

1965

1959

A. A. Sherwood, J. Proc. Roy Soc. New South Wales 93, 19 (1959).

Appl. Opt.

J. Proc. Roy Soc. New South Wales

A. A. Sherwood, J. Proc. Roy Soc. New South Wales 93, 19 (1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculation of transverse aberration TA(r).

Fig. 2
Fig. 2

Fringe on the surface and curved line on the ruling.

Fig. 3
Fig. 3

Calculated ruling for a paraboloid with diameter of 30 cm and a radius of curvature of 202 cm.

Fig. 4
Fig. 4

Normal Ronchi test.

Fig. 5
Fig. 5

Null Ronchi test.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T A ( r ) = a 1 r + a 3 r 3 + a 5 r 5 + a 7 r 7 + a 9 r 9 .
cos θ = X s / r = X R / T A ( r ) ,
X R = X s { [ T A ( r ) ] / r } ,
Y R = Y s { [ T A ( r ) ] / r } .
r = ( X s 2 + Y s 2 ) 1 / 2 .
a 1 = P R / P s ,

Metrics