Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. G. Gebhardt, D. C. Smith, IEEE J. Quantum Electron. QE-7, 63(1971).
    [CrossRef]
  2. F. G. Gebhardt, D. C. Smith, Appl. Opt. 11, 244 (1972).
    [CrossRef] [PubMed]
  3. J. Wallace, M. Camac, J. Opt. Soc. Am. 60, 1587 (1970).
    [CrossRef]
  4. P. V. Avizonis, C. B. Hogge, R. R. Butts, J. R. Kenemuth, Appl. Opt. 2, 554 (1972).
    [CrossRef]
  5. J. N. Hayes, P. B. Ulrich, A. H. Aitken, Appl. Opt. 11, 257(1972).
    [CrossRef] [PubMed]

1972

1971

F. G. Gebhardt, D. C. Smith, IEEE J. Quantum Electron. QE-7, 63(1971).
[CrossRef]

1970

Aitken, A. H.

Avizonis, P. V.

P. V. Avizonis, C. B. Hogge, R. R. Butts, J. R. Kenemuth, Appl. Opt. 2, 554 (1972).
[CrossRef]

Butts, R. R.

P. V. Avizonis, C. B. Hogge, R. R. Butts, J. R. Kenemuth, Appl. Opt. 2, 554 (1972).
[CrossRef]

Camac, M.

Gebhardt, F. G.

F. G. Gebhardt, D. C. Smith, Appl. Opt. 11, 244 (1972).
[CrossRef] [PubMed]

F. G. Gebhardt, D. C. Smith, IEEE J. Quantum Electron. QE-7, 63(1971).
[CrossRef]

Hayes, J. N.

Hogge, C. B.

P. V. Avizonis, C. B. Hogge, R. R. Butts, J. R. Kenemuth, Appl. Opt. 2, 554 (1972).
[CrossRef]

Kenemuth, J. R.

P. V. Avizonis, C. B. Hogge, R. R. Butts, J. R. Kenemuth, Appl. Opt. 2, 554 (1972).
[CrossRef]

Smith, D. C.

F. G. Gebhardt, D. C. Smith, Appl. Opt. 11, 244 (1972).
[CrossRef] [PubMed]

F. G. Gebhardt, D. C. Smith, IEEE J. Quantum Electron. QE-7, 63(1971).
[CrossRef]

Ulrich, P. B.

Wallace, J.

Appl. Opt.

IEEE J. Quantum Electron.

F. G. Gebhardt, D. C. Smith, IEEE J. Quantum Electron. QE-7, 63(1971).
[CrossRef]

J. Opt. Soc. Am.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (15)

Equations on this page are rendered with MathJax. Learn more.

2 x r z 2 = [ x ( n - n o n o ) ] r ,
2 y r z 2 = [ y ( n - n o n o ) ] r ,
n = n o + x n T α P ( x , y , z ) c P d x V ,
P ( x r , y r , z ) = P ( x a , y a , 0 ) / J ,
J = x r x a y r y r - x r y a y r x a .
x r ( x a , y a , z ) = x a ( 1 - z f ) - 0 z { n T α n o c P V [ P 0 ( 1 - z f ) - 2 ] } ( z - z ) d z ,
y r ( x a , y a , z ) = y a ( 1 - z f ) .
J = ( 1 - z f ) 2 ,
P ( x , y , z ) = { P 0 [ 1 - ( z / f ) ] - 2 , if ( x , y , z ) is within the beam , 0 , if otherwise .
n ( x , y , z ) = { n o + n T α c P V P 0 ( 1 - z f ) ( x r { 1 2 d , y [ 1 - ( z / f ) ] - 1 , z } - x ) , if ( x , y , z ) is within the beam , n o , if otherwise .
x ( n - n o n o ) = - n T α n o c P V P 0 ( 1 - z f ) - 2 .
y ( n - n o n o ) = 0.
2 x r z 2 = - n T α n o c P V P 0 ( 1 - z f ) - 2 ,
2 y r z 2 = 0.
Δ ( z ) = 0 z { n T α n o c P V [ P 0 ( 1 - z f ) - 2 ] } ( z - z ) d z ,

Metrics