Abstract

A two-dimensional (two-color) statistical structure is formulated that is applicable to pattern recognition, discrimination, and detection problems occurring in infrared signal-processing systems. The methodology relates physical quantities such as the temperature T of an object, its projected area A, emissivity , range R from the sensor, and noise equivalent flux density (NEFD) to the geometry of a local orthogonal coordinate system where the coordinate axes correspond to the apparent radiant intensity J in each micron bandwidth. The bivariate distribution, correlation, and transformation properties attendant to this framework are discussed in detail. Additional insight into the structure of the problem is achieved by investigating the two-color system in terms of a nonorthogonal local coordinate system. The various results presented in the paper may be extended to three-, four-, or five-color systems by direct analogies.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (49)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription