Abstract

A laser pattern generator has been developed using galvanometers for x-y beam deflection. The system can be operated in a random access mode, using optical beam position detection with digital computer control. In addition, it can be operated as a flying spot scanner in a raster type scan format using master transparency interrogation to produce simultaneously a laser machined copy of the master. In either mode, the system is characterized by high accuracy, high speed laser machining over a large field.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. N. Szabados, N. K. Sinah, C. D. DiCenzo, IEEE Trans. Ind. Electron. Contr. Instrum. 69 (1972).
  2. D. E. O’Brien, “Sensitivity Analysis of the Optimal Regulator Control of a Galvanometer Beam Deflection System,” Masters Thesis, Lehigh University (1973).

1972 (1)

B. N. Szabados, N. K. Sinah, C. D. DiCenzo, IEEE Trans. Ind. Electron. Contr. Instrum. 69 (1972).

DiCenzo, C. D.

B. N. Szabados, N. K. Sinah, C. D. DiCenzo, IEEE Trans. Ind. Electron. Contr. Instrum. 69 (1972).

O’Brien, D. E.

D. E. O’Brien, “Sensitivity Analysis of the Optimal Regulator Control of a Galvanometer Beam Deflection System,” Masters Thesis, Lehigh University (1973).

Sinah, N. K.

B. N. Szabados, N. K. Sinah, C. D. DiCenzo, IEEE Trans. Ind. Electron. Contr. Instrum. 69 (1972).

Szabados, B. N.

B. N. Szabados, N. K. Sinah, C. D. DiCenzo, IEEE Trans. Ind. Electron. Contr. Instrum. 69 (1972).

IEEE Trans. Ind. Electron. Contr. Instrum. (1)

B. N. Szabados, N. K. Sinah, C. D. DiCenzo, IEEE Trans. Ind. Electron. Contr. Instrum. 69 (1972).

Other (1)

D. E. O’Brien, “Sensitivity Analysis of the Optimal Regulator Control of a Galvanometer Beam Deflection System,” Masters Thesis, Lehigh University (1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Thin film circuit generation.

Fig. 2
Fig. 2

Typical thin film mask laser machined in tantalum.

Fig. 3
Fig. 3

Over-all configuration of the random access laser pattern generation system.

Fig. 4
Fig. 4

Pattern generation time vs the amount of material to be removed expressed as a percent of full field.

Fig. 5
Fig. 5

Schematic of the optical system employed in the pattern generator.

Fig. 6
Fig. 6

Relationship between the galvanometer gain-bandwidth product, system performance, and required system control.

Fig. 7
Fig. 7

Galvanometer step and ramp response both without and with input conditioning.

Fig. 8
Fig. 8

Conditioning portion of ramp or line drawing waveform illustrating requirements imposed on system control.

Fig. 9
Fig. 9

Drive circuit used for galvanometer control.

Fig. 10
Fig. 10

Experimental verification of ramp conditioning. The galvanometer is brought to a stop from steady state velocity and then instantaneously accelerated to a steady state velocity in the orthogonal direction. The oscillation resulted when the ramp was terminated without conditioning.

Fig. 11
Fig. 11

System hardware configuration when operated in copying mode.

Fig. 12
Fig. 12

Pattern machined in 20,000-Å gold film by copying a master emulsion transparency.

Tables (1)

Tables Icon

Table I System Specifications

Metrics