## Abstract

A polarization Fourier spectrometer is described that improves on the previous versions built by others and can be used from 0.3 *μ* to 2.5 *μ*. Several practical problems in the construction and data reduction are discussed, and a number of typical results are presented to show the performance of the instrument.

© 1974 Optical Society of America

Full Article |

PDF Article
### Equations (7)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$B(\sigma )=\sum _{k=0}^{N-1}A({x}_{k})[I({x}_{k})-\overline{I}]\times \text{cos}(2\pi \sigma {x}_{k})(2-{{\delta}_{k}}^{0}-{{\delta}_{k}}^{N-1}),$$
(2)
$${\u220a}^{2}(\sigma )=\sum _{k=0}^{N-1}{A}^{2}({x}_{k}){{e}_{k}}^{2}\mathrm{\hspace{0.17em}\u200a\u200a}\mathrm{\hspace{0.17em}\u200a\u200a}\mathrm{\hspace{0.17em}\u200a\u200a}{\text{cos}}^{2}(2\pi \sigma {x}_{k}){(2-{{\delta}_{k}}^{0}-{{\delta}_{k}}^{N-1})}^{2},$$
(3)
$${\u220a}^{2}={e}^{2}\hspace{0.17em}\left(\frac{1}{{\tau}_{0}}+2\sum _{k=0}^{N-1}{{A}_{k}}^{2}/{\tau}_{k}+\frac{1}{2}{{A}_{N-1}}^{2}/{\tau}_{N-1}\right).$$
(4)
$${\u220a}^{2}={e}^{2}\sum _{k=0}^{N-1}{{w}_{k}}^{2}/{\tau}_{k},$$
(5)
$${\tau}_{k}=T{w}_{k}/\sum _{k=0}^{N-1}{w}_{k}.$$
(6)
$${\u220a}^{2}=\frac{{e}^{2}}{T}{\left(\sum _{k=0}^{N-1}{w}_{k}\right)}^{2}.$$
(7)
$${\u220a}^{2}=\frac{{e}^{2}}{T}N\sum _{k=0}^{N-1}{{w}_{k}}^{2}.$$