Abstract

A new form of laser is proposed in which electrochemical energy in the form of a charge-transfer reaction would be used to create directly a population inversion. The direct formation of either excited-singlet-state molecules or excimers by radical-ion annihilation is suggested as the primary means of attaining a population inversion within the electroactive organic species. 9,10-Diphenylanthracene is proposed as a possible contender for the singlet approach, while 9,10-dimethylanthracene and 9,10-dichloranthracene are suggested for the excimer scheme. An estimate has been made of the conditions necessary to achieve laser action in the case of 9,10-diphenylanthracene.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Stockman, W. R. Mallory, T. F. Tittel, Proc. IEEE 52, 318 (1964).
    [Crossref]
  2. P. P. Sorokin, L. R. Lankard, IBM J. Res. Develop. 10, 162 (1966).
    [Crossref]
  3. F. P. Schaefer, W. Schmidt, J. Volze, Appl. Phys. Chem. 9, 306 (1966).
  4. N. Harvey, J. Phys. Chem. 33, 1456 (1929).
    [Crossref]
  5. R. E. Visco, E. A. Chandross, J. Am. Chem. Soc. 86, 5350 (1964).
    [Crossref]
  6. D. M. Hercules, Science 145, 3634 (1964).
    [Crossref]
  7. K. S. V. Santhanam, A. J. Bard, J. Am. Chem. Soc. 87, 139 (1965).
    [Crossref]
  8. D. M. Hercules, in Techniques of Chemistry, A. Weissberger, B. W. Rossiter, Eds., (Wiley-Interscience, New York, 1970), vol 1, part 2B.
  9. B. Fleet, P. N. Keliher, G. F. Kirkbright, C. J. Pickford, Analyst 94, 847 (1969).
    [Crossref]
  10. C. P. Keozthelyi, A. J. Bard, J. Electrochem. Soc. 120, 241 (1973).
    [Crossref]
  11. E. A. Chandross, J. W. Longworth, R. E. Visco, J. Am. Chem. Soc. 87, 3259 (1965).
    [Crossref]
  12. A. Zweig, D. L. Maricle, J. S. Brinen, A. H. Maurer, J. Am. Chem. Soc. 89, 473 (1967).
    [Crossref]
  13. L. L. Faulkner, A. J. Bard, J. Am. Chem. Soc. 90, 6284 (1968).
    [Crossref]
  14. T. C. Werner, J. Chang, D. M. Hercules, J. Am. Chem. Soc. 92, 763 (1970).
    [Crossref]
  15. G. J. Hoytink, Disc. Faraday Soc. 45, 14 (1968).
    [Crossref]
  16. L. R. Faulkner, A. J. Bard, J. Am. Chem. Soc. 91, 209 (1969).
    [Crossref]
  17. L. R. Faulkner, H. Tachikawa, A. J. Bard, J. Am. Chem. Soc. 94, 691 (1972).
    [Crossref]
  18. J. Chang, D. M. Hercules, D. K. Roe, Electrochimica Acta 13, 1197 (1968).
    [Crossref]
  19. D. J. Freed, L. R. Faulkner, J. Am. Chem. Soc. 93, 2097 (1971).
    [Crossref]
  20. E. W. Grabner, E. Brauer, Ber. Bunsen-Gesellsch. 76, 106 (1972).
  21. R. A. Marcus, J. Chem. Phys. 43, 2654 (1965).
    [Crossref]
  22. M. Von Smoluchowski, Phys. Z. 15, 515 (1916).
  23. P. Debye, Trans. Electrochem. Soc. 82, 265 (1942).
    [Crossref]
  24. R. M. Noyes, Progr. Reaction Kinet. 1, 129 (1961).
  25. D. N. Hague, Fast Reactions (Wiley, New York, 1971).
  26. C. A. Parker, G. D. Short, Trans. Faraday Soc. 63, 2618 (1967).
    [Crossref]
  27. A. J. Bard, K. S. V. Santhanam, S. A. Cruser, L. R. Faulkner, Fluorescence: Theory, Instrumentation and Practice, G. G. Guilbault, Ed. (Marcel Dekker, New York, 1967).
  28. E. W. Grabner, E. Brauer, Ben. Bunsen-Gesellsch. 76, 111 (1972).
  29. T. Natsumoto, M. Sato, S. Hirayama, S. Uemura, Bull. Chem. Soc. Japan 44, 1450 (1971).
    [Crossref]
  30. M. VuThien Han, Compt. Rend. 273B, 777 (1971).
  31. T. Förster, Disc. Faraday Soc. 27, 7 (1959).
    [Crossref]
  32. R. G. Bennett, R. P. Schwenker, R. E. Kellogg, J. Chem. Phys. 41, 3040 (1964).
    [Crossref]
  33. A. F. Vaudo, D. M. Hercules, J. Am. Chem. Soc. 92, 3573 (1970).
    [Crossref]
  34. T. Matsumoto, M. Sato, S. Hirayama, Bull. Chem. Soc. Japan 46, 369 (1973).
    [Crossref]
  35. P. P. Sorokin, L. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
    [Crossref]
  36. C. A. Parker, Advances in Photochemistry, W. A. Noyes, O. S. Hammond, J. N. Pitts, Eds. (Interscience, New York, 1964), vol. 2.
  37. A. A. Lamola, N. J. Turro, Energy Transfer and Organic Photochemistry (Interscience, New York, 1969).
  38. S. W. Feldberg, J. Am. Chem. Soc. 88, 390 (1966).
    [Crossref]
  39. S. W. Feldberg, J. Phys. Chem. 70, 3928 (1966).
    [Crossref]
  40. D. E. McCumber, Phys. Rev. 134, A299 (1964).
    [Crossref]
  41. B. B. Snavely, Proc. IEEE 57, 1374 (1969).
    [Crossref]
  42. J. T. Maloy, K. B. Prater, A. J. Bard, J. Am. Chem. Soc. 93, 5959 (1971).
    [Crossref]
  43. J. T. Maloy, A. J. Bard, J. Am. Chem. Soc. 93, 5968 (1971).
    [Crossref]
  44. R. Bezman, L. R. Faulkner, J. Am. Chem. Soc. 94, 6317 (1972) and J. Am. Chem. Soc. 95, 3083 (1973).
    [Crossref]
  45. I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules (Academic Press, New York, 1965).
  46. D. J. Freed, L. R. Faulkner, J. Am. Chem. Soc. 93, 3565 (1971).
    [Crossref]
  47. M. J. Weber, M. Bass, IEEE J. Quant. Electron. QE-5, 175 (1969).
    [Crossref]
  48. B. G. Huth, G. I. Farmer, IEEE J. Quant. Electron QE-4, 427 (1968).
    [Crossref]
  49. D. M. Hercules, Acc. Chem. Res. 2, 301 (1969).
    [Crossref]
  50. T. M. Siegel, H. B. Mark, J. Am. Chem. Soc. 93, 6281 (1971).
    [Crossref]
  51. σ (M−1 cm−1) = N0σ(cm2)/103, where N0 is Avogadro’s number.
  52. If the cavity length is greater than the active medium length, the cavity loss term in Eq. (6) is multiplied by a factor l(cavity)/l(active medium).

1973 (2)

C. P. Keozthelyi, A. J. Bard, J. Electrochem. Soc. 120, 241 (1973).
[Crossref]

T. Matsumoto, M. Sato, S. Hirayama, Bull. Chem. Soc. Japan 46, 369 (1973).
[Crossref]

1972 (4)

E. W. Grabner, E. Brauer, Ber. Bunsen-Gesellsch. 76, 106 (1972).

E. W. Grabner, E. Brauer, Ben. Bunsen-Gesellsch. 76, 111 (1972).

L. R. Faulkner, H. Tachikawa, A. J. Bard, J. Am. Chem. Soc. 94, 691 (1972).
[Crossref]

R. Bezman, L. R. Faulkner, J. Am. Chem. Soc. 94, 6317 (1972) and J. Am. Chem. Soc. 95, 3083 (1973).
[Crossref]

1971 (7)

D. J. Freed, L. R. Faulkner, J. Am. Chem. Soc. 93, 3565 (1971).
[Crossref]

J. T. Maloy, K. B. Prater, A. J. Bard, J. Am. Chem. Soc. 93, 5959 (1971).
[Crossref]

J. T. Maloy, A. J. Bard, J. Am. Chem. Soc. 93, 5968 (1971).
[Crossref]

T. M. Siegel, H. B. Mark, J. Am. Chem. Soc. 93, 6281 (1971).
[Crossref]

T. Natsumoto, M. Sato, S. Hirayama, S. Uemura, Bull. Chem. Soc. Japan 44, 1450 (1971).
[Crossref]

M. VuThien Han, Compt. Rend. 273B, 777 (1971).

D. J. Freed, L. R. Faulkner, J. Am. Chem. Soc. 93, 2097 (1971).
[Crossref]

1970 (2)

A. F. Vaudo, D. M. Hercules, J. Am. Chem. Soc. 92, 3573 (1970).
[Crossref]

T. C. Werner, J. Chang, D. M. Hercules, J. Am. Chem. Soc. 92, 763 (1970).
[Crossref]

1969 (5)

B. Fleet, P. N. Keliher, G. F. Kirkbright, C. J. Pickford, Analyst 94, 847 (1969).
[Crossref]

L. R. Faulkner, A. J. Bard, J. Am. Chem. Soc. 91, 209 (1969).
[Crossref]

B. B. Snavely, Proc. IEEE 57, 1374 (1969).
[Crossref]

D. M. Hercules, Acc. Chem. Res. 2, 301 (1969).
[Crossref]

M. J. Weber, M. Bass, IEEE J. Quant. Electron. QE-5, 175 (1969).
[Crossref]

1968 (5)

B. G. Huth, G. I. Farmer, IEEE J. Quant. Electron QE-4, 427 (1968).
[Crossref]

L. L. Faulkner, A. J. Bard, J. Am. Chem. Soc. 90, 6284 (1968).
[Crossref]

J. Chang, D. M. Hercules, D. K. Roe, Electrochimica Acta 13, 1197 (1968).
[Crossref]

G. J. Hoytink, Disc. Faraday Soc. 45, 14 (1968).
[Crossref]

P. P. Sorokin, L. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
[Crossref]

1967 (2)

C. A. Parker, G. D. Short, Trans. Faraday Soc. 63, 2618 (1967).
[Crossref]

A. Zweig, D. L. Maricle, J. S. Brinen, A. H. Maurer, J. Am. Chem. Soc. 89, 473 (1967).
[Crossref]

1966 (4)

P. P. Sorokin, L. R. Lankard, IBM J. Res. Develop. 10, 162 (1966).
[Crossref]

F. P. Schaefer, W. Schmidt, J. Volze, Appl. Phys. Chem. 9, 306 (1966).

S. W. Feldberg, J. Am. Chem. Soc. 88, 390 (1966).
[Crossref]

S. W. Feldberg, J. Phys. Chem. 70, 3928 (1966).
[Crossref]

1965 (3)

R. A. Marcus, J. Chem. Phys. 43, 2654 (1965).
[Crossref]

E. A. Chandross, J. W. Longworth, R. E. Visco, J. Am. Chem. Soc. 87, 3259 (1965).
[Crossref]

K. S. V. Santhanam, A. J. Bard, J. Am. Chem. Soc. 87, 139 (1965).
[Crossref]

1964 (5)

D. L. Stockman, W. R. Mallory, T. F. Tittel, Proc. IEEE 52, 318 (1964).
[Crossref]

R. E. Visco, E. A. Chandross, J. Am. Chem. Soc. 86, 5350 (1964).
[Crossref]

D. M. Hercules, Science 145, 3634 (1964).
[Crossref]

D. E. McCumber, Phys. Rev. 134, A299 (1964).
[Crossref]

R. G. Bennett, R. P. Schwenker, R. E. Kellogg, J. Chem. Phys. 41, 3040 (1964).
[Crossref]

1961 (1)

R. M. Noyes, Progr. Reaction Kinet. 1, 129 (1961).

1959 (1)

T. Förster, Disc. Faraday Soc. 27, 7 (1959).
[Crossref]

1942 (1)

P. Debye, Trans. Electrochem. Soc. 82, 265 (1942).
[Crossref]

1929 (1)

N. Harvey, J. Phys. Chem. 33, 1456 (1929).
[Crossref]

1916 (1)

M. Von Smoluchowski, Phys. Z. 15, 515 (1916).

Bard, A. J.

C. P. Keozthelyi, A. J. Bard, J. Electrochem. Soc. 120, 241 (1973).
[Crossref]

L. R. Faulkner, H. Tachikawa, A. J. Bard, J. Am. Chem. Soc. 94, 691 (1972).
[Crossref]

J. T. Maloy, K. B. Prater, A. J. Bard, J. Am. Chem. Soc. 93, 5959 (1971).
[Crossref]

J. T. Maloy, A. J. Bard, J. Am. Chem. Soc. 93, 5968 (1971).
[Crossref]

L. R. Faulkner, A. J. Bard, J. Am. Chem. Soc. 91, 209 (1969).
[Crossref]

L. L. Faulkner, A. J. Bard, J. Am. Chem. Soc. 90, 6284 (1968).
[Crossref]

K. S. V. Santhanam, A. J. Bard, J. Am. Chem. Soc. 87, 139 (1965).
[Crossref]

A. J. Bard, K. S. V. Santhanam, S. A. Cruser, L. R. Faulkner, Fluorescence: Theory, Instrumentation and Practice, G. G. Guilbault, Ed. (Marcel Dekker, New York, 1967).

Bass, M.

M. J. Weber, M. Bass, IEEE J. Quant. Electron. QE-5, 175 (1969).
[Crossref]

Bennett, R. G.

R. G. Bennett, R. P. Schwenker, R. E. Kellogg, J. Chem. Phys. 41, 3040 (1964).
[Crossref]

Berlman, I. B.

I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules (Academic Press, New York, 1965).

Bezman, R.

R. Bezman, L. R. Faulkner, J. Am. Chem. Soc. 94, 6317 (1972) and J. Am. Chem. Soc. 95, 3083 (1973).
[Crossref]

Brauer, E.

E. W. Grabner, E. Brauer, Ben. Bunsen-Gesellsch. 76, 111 (1972).

E. W. Grabner, E. Brauer, Ber. Bunsen-Gesellsch. 76, 106 (1972).

Brinen, J. S.

A. Zweig, D. L. Maricle, J. S. Brinen, A. H. Maurer, J. Am. Chem. Soc. 89, 473 (1967).
[Crossref]

Chandross, E. A.

E. A. Chandross, J. W. Longworth, R. E. Visco, J. Am. Chem. Soc. 87, 3259 (1965).
[Crossref]

R. E. Visco, E. A. Chandross, J. Am. Chem. Soc. 86, 5350 (1964).
[Crossref]

Chang, J.

T. C. Werner, J. Chang, D. M. Hercules, J. Am. Chem. Soc. 92, 763 (1970).
[Crossref]

J. Chang, D. M. Hercules, D. K. Roe, Electrochimica Acta 13, 1197 (1968).
[Crossref]

Cruser, S. A.

A. J. Bard, K. S. V. Santhanam, S. A. Cruser, L. R. Faulkner, Fluorescence: Theory, Instrumentation and Practice, G. G. Guilbault, Ed. (Marcel Dekker, New York, 1967).

Debye, P.

P. Debye, Trans. Electrochem. Soc. 82, 265 (1942).
[Crossref]

Farmer, G. I.

B. G. Huth, G. I. Farmer, IEEE J. Quant. Electron QE-4, 427 (1968).
[Crossref]

Faulkner, L. L.

L. L. Faulkner, A. J. Bard, J. Am. Chem. Soc. 90, 6284 (1968).
[Crossref]

Faulkner, L. R.

L. R. Faulkner, H. Tachikawa, A. J. Bard, J. Am. Chem. Soc. 94, 691 (1972).
[Crossref]

R. Bezman, L. R. Faulkner, J. Am. Chem. Soc. 94, 6317 (1972) and J. Am. Chem. Soc. 95, 3083 (1973).
[Crossref]

D. J. Freed, L. R. Faulkner, J. Am. Chem. Soc. 93, 3565 (1971).
[Crossref]

D. J. Freed, L. R. Faulkner, J. Am. Chem. Soc. 93, 2097 (1971).
[Crossref]

L. R. Faulkner, A. J. Bard, J. Am. Chem. Soc. 91, 209 (1969).
[Crossref]

A. J. Bard, K. S. V. Santhanam, S. A. Cruser, L. R. Faulkner, Fluorescence: Theory, Instrumentation and Practice, G. G. Guilbault, Ed. (Marcel Dekker, New York, 1967).

Feldberg, S. W.

S. W. Feldberg, J. Am. Chem. Soc. 88, 390 (1966).
[Crossref]

S. W. Feldberg, J. Phys. Chem. 70, 3928 (1966).
[Crossref]

Fleet, B.

B. Fleet, P. N. Keliher, G. F. Kirkbright, C. J. Pickford, Analyst 94, 847 (1969).
[Crossref]

Förster, T.

T. Förster, Disc. Faraday Soc. 27, 7 (1959).
[Crossref]

Freed, D. J.

D. J. Freed, L. R. Faulkner, J. Am. Chem. Soc. 93, 2097 (1971).
[Crossref]

D. J. Freed, L. R. Faulkner, J. Am. Chem. Soc. 93, 3565 (1971).
[Crossref]

Grabner, E. W.

E. W. Grabner, E. Brauer, Ben. Bunsen-Gesellsch. 76, 111 (1972).

E. W. Grabner, E. Brauer, Ber. Bunsen-Gesellsch. 76, 106 (1972).

Hague, D. N.

D. N. Hague, Fast Reactions (Wiley, New York, 1971).

Hammond, E. C.

P. P. Sorokin, L. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
[Crossref]

Harvey, N.

N. Harvey, J. Phys. Chem. 33, 1456 (1929).
[Crossref]

Hercules, D. M.

T. C. Werner, J. Chang, D. M. Hercules, J. Am. Chem. Soc. 92, 763 (1970).
[Crossref]

A. F. Vaudo, D. M. Hercules, J. Am. Chem. Soc. 92, 3573 (1970).
[Crossref]

D. M. Hercules, Acc. Chem. Res. 2, 301 (1969).
[Crossref]

J. Chang, D. M. Hercules, D. K. Roe, Electrochimica Acta 13, 1197 (1968).
[Crossref]

D. M. Hercules, Science 145, 3634 (1964).
[Crossref]

D. M. Hercules, in Techniques of Chemistry, A. Weissberger, B. W. Rossiter, Eds., (Wiley-Interscience, New York, 1970), vol 1, part 2B.

Hirayama, S.

T. Matsumoto, M. Sato, S. Hirayama, Bull. Chem. Soc. Japan 46, 369 (1973).
[Crossref]

T. Natsumoto, M. Sato, S. Hirayama, S. Uemura, Bull. Chem. Soc. Japan 44, 1450 (1971).
[Crossref]

Hoytink, G. J.

G. J. Hoytink, Disc. Faraday Soc. 45, 14 (1968).
[Crossref]

Huth, B. G.

B. G. Huth, G. I. Farmer, IEEE J. Quant. Electron QE-4, 427 (1968).
[Crossref]

Keliher, P. N.

B. Fleet, P. N. Keliher, G. F. Kirkbright, C. J. Pickford, Analyst 94, 847 (1969).
[Crossref]

Kellogg, R. E.

R. G. Bennett, R. P. Schwenker, R. E. Kellogg, J. Chem. Phys. 41, 3040 (1964).
[Crossref]

Keozthelyi, C. P.

C. P. Keozthelyi, A. J. Bard, J. Electrochem. Soc. 120, 241 (1973).
[Crossref]

Kirkbright, G. F.

B. Fleet, P. N. Keliher, G. F. Kirkbright, C. J. Pickford, Analyst 94, 847 (1969).
[Crossref]

Lamola, A. A.

A. A. Lamola, N. J. Turro, Energy Transfer and Organic Photochemistry (Interscience, New York, 1969).

Lankard, L. R.

P. P. Sorokin, L. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
[Crossref]

P. P. Sorokin, L. R. Lankard, IBM J. Res. Develop. 10, 162 (1966).
[Crossref]

Longworth, J. W.

E. A. Chandross, J. W. Longworth, R. E. Visco, J. Am. Chem. Soc. 87, 3259 (1965).
[Crossref]

Mallory, W. R.

D. L. Stockman, W. R. Mallory, T. F. Tittel, Proc. IEEE 52, 318 (1964).
[Crossref]

Maloy, J. T.

J. T. Maloy, K. B. Prater, A. J. Bard, J. Am. Chem. Soc. 93, 5959 (1971).
[Crossref]

J. T. Maloy, A. J. Bard, J. Am. Chem. Soc. 93, 5968 (1971).
[Crossref]

Marcus, R. A.

R. A. Marcus, J. Chem. Phys. 43, 2654 (1965).
[Crossref]

Maricle, D. L.

A. Zweig, D. L. Maricle, J. S. Brinen, A. H. Maurer, J. Am. Chem. Soc. 89, 473 (1967).
[Crossref]

Mark, H. B.

T. M. Siegel, H. B. Mark, J. Am. Chem. Soc. 93, 6281 (1971).
[Crossref]

Matsumoto, T.

T. Matsumoto, M. Sato, S. Hirayama, Bull. Chem. Soc. Japan 46, 369 (1973).
[Crossref]

Maurer, A. H.

A. Zweig, D. L. Maricle, J. S. Brinen, A. H. Maurer, J. Am. Chem. Soc. 89, 473 (1967).
[Crossref]

McCumber, D. E.

D. E. McCumber, Phys. Rev. 134, A299 (1964).
[Crossref]

Moruzzi, V. L.

P. P. Sorokin, L. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
[Crossref]

Natsumoto, T.

T. Natsumoto, M. Sato, S. Hirayama, S. Uemura, Bull. Chem. Soc. Japan 44, 1450 (1971).
[Crossref]

Noyes, R. M.

R. M. Noyes, Progr. Reaction Kinet. 1, 129 (1961).

Parker, C. A.

C. A. Parker, G. D. Short, Trans. Faraday Soc. 63, 2618 (1967).
[Crossref]

C. A. Parker, Advances in Photochemistry, W. A. Noyes, O. S. Hammond, J. N. Pitts, Eds. (Interscience, New York, 1964), vol. 2.

Pickford, C. J.

B. Fleet, P. N. Keliher, G. F. Kirkbright, C. J. Pickford, Analyst 94, 847 (1969).
[Crossref]

Prater, K. B.

J. T. Maloy, K. B. Prater, A. J. Bard, J. Am. Chem. Soc. 93, 5959 (1971).
[Crossref]

Roe, D. K.

J. Chang, D. M. Hercules, D. K. Roe, Electrochimica Acta 13, 1197 (1968).
[Crossref]

Santhanam, K. S. V.

K. S. V. Santhanam, A. J. Bard, J. Am. Chem. Soc. 87, 139 (1965).
[Crossref]

A. J. Bard, K. S. V. Santhanam, S. A. Cruser, L. R. Faulkner, Fluorescence: Theory, Instrumentation and Practice, G. G. Guilbault, Ed. (Marcel Dekker, New York, 1967).

Sato, M.

T. Matsumoto, M. Sato, S. Hirayama, Bull. Chem. Soc. Japan 46, 369 (1973).
[Crossref]

T. Natsumoto, M. Sato, S. Hirayama, S. Uemura, Bull. Chem. Soc. Japan 44, 1450 (1971).
[Crossref]

Schaefer, F. P.

F. P. Schaefer, W. Schmidt, J. Volze, Appl. Phys. Chem. 9, 306 (1966).

Schmidt, W.

F. P. Schaefer, W. Schmidt, J. Volze, Appl. Phys. Chem. 9, 306 (1966).

Schwenker, R. P.

R. G. Bennett, R. P. Schwenker, R. E. Kellogg, J. Chem. Phys. 41, 3040 (1964).
[Crossref]

Short, G. D.

C. A. Parker, G. D. Short, Trans. Faraday Soc. 63, 2618 (1967).
[Crossref]

Siegel, T. M.

T. M. Siegel, H. B. Mark, J. Am. Chem. Soc. 93, 6281 (1971).
[Crossref]

Snavely, B. B.

B. B. Snavely, Proc. IEEE 57, 1374 (1969).
[Crossref]

Sorokin, P. P.

P. P. Sorokin, L. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
[Crossref]

P. P. Sorokin, L. R. Lankard, IBM J. Res. Develop. 10, 162 (1966).
[Crossref]

Stockman, D. L.

D. L. Stockman, W. R. Mallory, T. F. Tittel, Proc. IEEE 52, 318 (1964).
[Crossref]

Tachikawa, H.

L. R. Faulkner, H. Tachikawa, A. J. Bard, J. Am. Chem. Soc. 94, 691 (1972).
[Crossref]

Tittel, T. F.

D. L. Stockman, W. R. Mallory, T. F. Tittel, Proc. IEEE 52, 318 (1964).
[Crossref]

Turro, N. J.

A. A. Lamola, N. J. Turro, Energy Transfer and Organic Photochemistry (Interscience, New York, 1969).

Uemura, S.

T. Natsumoto, M. Sato, S. Hirayama, S. Uemura, Bull. Chem. Soc. Japan 44, 1450 (1971).
[Crossref]

Vaudo, A. F.

A. F. Vaudo, D. M. Hercules, J. Am. Chem. Soc. 92, 3573 (1970).
[Crossref]

Visco, R. E.

E. A. Chandross, J. W. Longworth, R. E. Visco, J. Am. Chem. Soc. 87, 3259 (1965).
[Crossref]

R. E. Visco, E. A. Chandross, J. Am. Chem. Soc. 86, 5350 (1964).
[Crossref]

Volze, J.

F. P. Schaefer, W. Schmidt, J. Volze, Appl. Phys. Chem. 9, 306 (1966).

Von Smoluchowski, M.

M. Von Smoluchowski, Phys. Z. 15, 515 (1916).

VuThien Han, M.

M. VuThien Han, Compt. Rend. 273B, 777 (1971).

Weber, M. J.

M. J. Weber, M. Bass, IEEE J. Quant. Electron. QE-5, 175 (1969).
[Crossref]

Werner, T. C.

T. C. Werner, J. Chang, D. M. Hercules, J. Am. Chem. Soc. 92, 763 (1970).
[Crossref]

Zweig, A.

A. Zweig, D. L. Maricle, J. S. Brinen, A. H. Maurer, J. Am. Chem. Soc. 89, 473 (1967).
[Crossref]

Acc. Chem. Res. (1)

D. M. Hercules, Acc. Chem. Res. 2, 301 (1969).
[Crossref]

Analyst (1)

B. Fleet, P. N. Keliher, G. F. Kirkbright, C. J. Pickford, Analyst 94, 847 (1969).
[Crossref]

Appl. Phys. Chem. (1)

F. P. Schaefer, W. Schmidt, J. Volze, Appl. Phys. Chem. 9, 306 (1966).

Ben. Bunsen-Gesellsch. (1)

E. W. Grabner, E. Brauer, Ben. Bunsen-Gesellsch. 76, 111 (1972).

Ber. Bunsen-Gesellsch. (1)

E. W. Grabner, E. Brauer, Ber. Bunsen-Gesellsch. 76, 106 (1972).

Bull. Chem. Soc. Japan (2)

T. Natsumoto, M. Sato, S. Hirayama, S. Uemura, Bull. Chem. Soc. Japan 44, 1450 (1971).
[Crossref]

T. Matsumoto, M. Sato, S. Hirayama, Bull. Chem. Soc. Japan 46, 369 (1973).
[Crossref]

Compt. Rend. (1)

M. VuThien Han, Compt. Rend. 273B, 777 (1971).

Disc. Faraday Soc. (2)

T. Förster, Disc. Faraday Soc. 27, 7 (1959).
[Crossref]

G. J. Hoytink, Disc. Faraday Soc. 45, 14 (1968).
[Crossref]

Electrochimica Acta (1)

J. Chang, D. M. Hercules, D. K. Roe, Electrochimica Acta 13, 1197 (1968).
[Crossref]

IBM J. Res. Develop. (1)

P. P. Sorokin, L. R. Lankard, IBM J. Res. Develop. 10, 162 (1966).
[Crossref]

IEEE J. Quant. Electron (1)

B. G. Huth, G. I. Farmer, IEEE J. Quant. Electron QE-4, 427 (1968).
[Crossref]

IEEE J. Quant. Electron. (1)

M. J. Weber, M. Bass, IEEE J. Quant. Electron. QE-5, 175 (1969).
[Crossref]

J. Am. Chem. Soc. (16)

T. M. Siegel, H. B. Mark, J. Am. Chem. Soc. 93, 6281 (1971).
[Crossref]

A. F. Vaudo, D. M. Hercules, J. Am. Chem. Soc. 92, 3573 (1970).
[Crossref]

D. J. Freed, L. R. Faulkner, J. Am. Chem. Soc. 93, 3565 (1971).
[Crossref]

S. W. Feldberg, J. Am. Chem. Soc. 88, 390 (1966).
[Crossref]

J. T. Maloy, K. B. Prater, A. J. Bard, J. Am. Chem. Soc. 93, 5959 (1971).
[Crossref]

J. T. Maloy, A. J. Bard, J. Am. Chem. Soc. 93, 5968 (1971).
[Crossref]

R. Bezman, L. R. Faulkner, J. Am. Chem. Soc. 94, 6317 (1972) and J. Am. Chem. Soc. 95, 3083 (1973).
[Crossref]

R. E. Visco, E. A. Chandross, J. Am. Chem. Soc. 86, 5350 (1964).
[Crossref]

K. S. V. Santhanam, A. J. Bard, J. Am. Chem. Soc. 87, 139 (1965).
[Crossref]

L. R. Faulkner, A. J. Bard, J. Am. Chem. Soc. 91, 209 (1969).
[Crossref]

L. R. Faulkner, H. Tachikawa, A. J. Bard, J. Am. Chem. Soc. 94, 691 (1972).
[Crossref]

E. A. Chandross, J. W. Longworth, R. E. Visco, J. Am. Chem. Soc. 87, 3259 (1965).
[Crossref]

A. Zweig, D. L. Maricle, J. S. Brinen, A. H. Maurer, J. Am. Chem. Soc. 89, 473 (1967).
[Crossref]

L. L. Faulkner, A. J. Bard, J. Am. Chem. Soc. 90, 6284 (1968).
[Crossref]

T. C. Werner, J. Chang, D. M. Hercules, J. Am. Chem. Soc. 92, 763 (1970).
[Crossref]

D. J. Freed, L. R. Faulkner, J. Am. Chem. Soc. 93, 2097 (1971).
[Crossref]

J. Chem. Phys. (3)

R. A. Marcus, J. Chem. Phys. 43, 2654 (1965).
[Crossref]

R. G. Bennett, R. P. Schwenker, R. E. Kellogg, J. Chem. Phys. 41, 3040 (1964).
[Crossref]

P. P. Sorokin, L. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
[Crossref]

J. Electrochem. Soc. (1)

C. P. Keozthelyi, A. J. Bard, J. Electrochem. Soc. 120, 241 (1973).
[Crossref]

J. Phys. Chem. (2)

N. Harvey, J. Phys. Chem. 33, 1456 (1929).
[Crossref]

S. W. Feldberg, J. Phys. Chem. 70, 3928 (1966).
[Crossref]

Phys. Rev. (1)

D. E. McCumber, Phys. Rev. 134, A299 (1964).
[Crossref]

Phys. Z. (1)

M. Von Smoluchowski, Phys. Z. 15, 515 (1916).

Proc. IEEE (2)

D. L. Stockman, W. R. Mallory, T. F. Tittel, Proc. IEEE 52, 318 (1964).
[Crossref]

B. B. Snavely, Proc. IEEE 57, 1374 (1969).
[Crossref]

Progr. Reaction Kinet. (1)

R. M. Noyes, Progr. Reaction Kinet. 1, 129 (1961).

Science (1)

D. M. Hercules, Science 145, 3634 (1964).
[Crossref]

Trans. Electrochem. Soc. (1)

P. Debye, Trans. Electrochem. Soc. 82, 265 (1942).
[Crossref]

Trans. Faraday Soc. (1)

C. A. Parker, G. D. Short, Trans. Faraday Soc. 63, 2618 (1967).
[Crossref]

Other (8)

A. J. Bard, K. S. V. Santhanam, S. A. Cruser, L. R. Faulkner, Fluorescence: Theory, Instrumentation and Practice, G. G. Guilbault, Ed. (Marcel Dekker, New York, 1967).

σ (M−1 cm−1) = N0σ(cm2)/103, where N0 is Avogadro’s number.

If the cavity length is greater than the active medium length, the cavity loss term in Eq. (6) is multiplied by a factor l(cavity)/l(active medium).

I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules (Academic Press, New York, 1965).

D. N. Hague, Fast Reactions (Wiley, New York, 1971).

C. A. Parker, Advances in Photochemistry, W. A. Noyes, O. S. Hammond, J. N. Pitts, Eds. (Interscience, New York, 1964), vol. 2.

A. A. Lamola, N. J. Turro, Energy Transfer and Organic Photochemistry (Interscience, New York, 1969).

D. M. Hercules, in Techniques of Chemistry, A. Weissberger, B. W. Rossiter, Eds., (Wiley-Interscience, New York, 1970), vol 1, part 2B.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Basic electrochemiluminescence (ECL) process.

Fig. 2
Fig. 2

Schematic representation of ion recombination.

Fig. 3
Fig. 3

Two laser schemes based on ECL. (D1*, S1* and S0* represent Franck-Condon states while D1, S1, and S0 represent equilibrium states.)

Fig. 4
Fig. 4

Typical curves obtained from double potential step ECL studies.

Fig. 5
Fig. 5

Schematic design of simple electrochemiluminescent laser.

Fig. 6
Fig. 6

Kinetic model for direct formation of excited singlet population by radical-ion annihilation.

Fig. 7
Fig. 7

System gain against concentration to the threshold concentration ratio.

Fig. 8
Fig. 8

Threshold population inversion as a function of the stimulated emission cross section for two values of cavity reflectivity R.

Fig. 9
Fig. 9

Threshold concentration of ECL material against annihilation time for three values of stimulated emission cross section.

Equations (58)

Equations on this page are rendered with MathJax. Learn more.

K a s = ¼ K d exp ( - Δ H s * / k T ) , K a t = ¾ K d exp ( - Δ H t * / k T ) ,
K d = 8 R T / 3000 η ( M - 1 sec - 1 )
( Donor ) 3 * + ( Acceptor ) 3 * ( Donor ) + ( Acceptor ) 1 * ,
( Donor ) 3 * + ( Acceptor ) ( Donor ) + ( Acceptor ) 1 * ,
( C s / t ) - D s ( 2 C s / x 2 ) = K a s C + C - + C g σ g a n ν c - C s [ K s t + ( 1 / τ s ) + σ s e n ν c ] ,
( C t / t ) - D t ( 2 C t / x 2 ) = K a t C + C - + C s K s t - C t [ ( 1 / τ t ) + σ t a n ν c ] ,
( C g / t ) - D g ( 2 C g / x 2 ) = C s [ ( 1 / τ s ) + σ s e n ν c ] + ( K a s + K a t ) C + C - + C t ( 1 / τ t ) - C g σ g a n ν c ,
( C + / t ) - D + ( 2 C + / x 2 ) = - ( K a s + K a t ) C + C - ,
( C - / t ) - D - ( 2 C - / x 2 ) = - ( K a s + K a t ) C + C - ,
( n ν / t ) + ( / x ) ( n ν c ) = ( C s σ s e - C g σ g a ) c n ν + ( C s Ω / T s ) - ( n ν / τ c ) - C t σ t a n ν c ,
τ c = μ l / ( 1 - R ) c ,
1 / τ s = ( 1 / T s ) + Q s
1 / τ t = ( 1 / T t ) + Q t .
( C s / t ) - D ( 2 C s / x 2 ) = K a s C + C - - [ ( 1 / τ s ) + K s t ] C s ,
( C t / t ) - D ( 2 C t / x 2 ) = K a t C + C - + K s t C s - C t ( 1 / τ t ) ,
( C g / t ) - D ( 2 C g / x 2 ) = ( C s / τ s ) + ( C t / τ t ) + ( K a s + K a t ) C + C - ,
( C + / t ) - D ( 2 C + / x 2 ) = - ( K a s + K a t ) C + C - ,
( C - / C ) - D ( 2 C - / x 2 ) = - ( K a s + K a t ) C + C - .
C s τ s K a s C + C - / ( 1 + τ s K s t ) ,
C t τ t { K a t + [ τ s K s t K a s / ( 1 + τ s K s t ) ] } C + C -
ϕ s * ϕ s / ( 1 + τ s K s t ) .
C s ϕ s * τ s K C + C - ,
C t = ( 1 - ϕ s * ) τ t K C + C - ,
( C g / t ) - D ( 2 C g / x 2 ) = 2 K C + C - ,
( C + / t ) - D ( 2 C + / x 2 ) = - K C + C - ,
( C - / t ) - D ( 2 C - / x 2 ) = - K C + C - .
π ( λ ) = C s σ s e ( λ ) - C g σ g a ( λ ) - C t σ t a ( λ ) ,
G ( λ ) = π ( λ ) - ( 1 / c τ c ) ,
π t h ( λ ) = 1 / c τ c as G = 0.
G = ( C / C t h ) ( 1 / c τ c ) - ( 1 / c τ c )
G = [ ( C / C t h ) - 1 ] ( 1 - R ) / μ l .
I = ϕ e c l A C D 1 / 2 t f 1 / 2 [ 10 - 1.45 ( t r t f ) 1 / 2 + 0.71 ] ,
I = ϕ e c l A ( D τ a ) 1 / 2 K C + C - ,
S K C + C - = C ( 10 - 1.45 ( t r t f ) 1 / 2 + 0.71 ) / ( τ a t f ) 1 / 2 .
ρ = ( 10 - 1.45 ( t r t f ) 1 / 2 + 0.71 ) / ( τ a t f ) 1 / 2 ,
S = C ρ ,
C s = ϕ s * C ρ τ s
C t = ( 1 - ϕ s * ) C ρ τ t ,
G ( λ ) = { τ s ρ [ ϕ s * - ( 1 - ϕ s * ) θ t s ( σ g a / σ s e ) ] - ( σ g a / σ s e ) } C σ s e ( λ ) - ( 1 / c τ c ) ,
σ g a ( ν ) / σ g e ( ν ) = exp [ - h ( ν - ν 0 ) / k τ ] ,
G ( λ ) = { ϕ s * - [ ( 1 - ϕ s * ) θ t s + ( 1 / ρ τ s ) × exp [ - ( Δ E / k T ) ] } C τ s ρ σ s e ( λ ) - [ ( 1 - R ) / μ l ] .
C t h = ( 1 - R ) / μ l τ s ρ σ s e ( λ ) [ ϕ s * - [ ( 1 - ϕ s * ) θ t s + ( 1 / ρ τ s ) ] exp [ - ( Δ E / k T ) ] } .
σ s e ( λ ) = λ 4 E ( λ ) / 8 π c μ 2 T s ( cm 2 ) [ or λ 4 E ( λ ) N 0 / 8 π c μ 2 T s 10 3 ( M - 1 cm - 1 ) ] ,
1 / τ s ρ ( 1 - ϕ s * ) θ t s .
C t h = ( 1 - R ) / μ l σ s e ( λ ) { ϕ s τ s ρ - exp [ - ( Δ E / k T ) ] } .
Δ C C s - C g ( σ g a / σ s e ) .
G ( λ ) = σ s e ( λ ) Δ C - ( 1 / c τ c ) ,
Δ C t h = ( 1 - R ) / σ s e ( λ ) μ l ( M )
Δ N t h = ( 1 - R ) σ s e ( λ ) μ l ( cm - 3 )
Δ C = { ϕ s τ s ρ - exp [ - ( Δ E / k T ) ] } C ,
ρ ϕ s τ s exp [ - ( Δ E / k T ) ] ,
Δ λ > ( λ 2 k T / h c ) log e ( 1 / ϕ s τ s ρ ) .
π ( λ ) = ϕ s τ s ρ C σ s e ( λ )
C t h = ( 1 - R ) / μ l σ s e ( λ ) ϕ s τ s ρ
P = ϕ f ϕ s h ν K C + C - = ϕ f ϕ s h ν C ρ ( N 0 / 10 3 ) × 1.6 × 10 - 19 ( W cm - 3 ) ,
= ϕ f h ν K a s C + C - / E redox K C + C - = ϕ f ϕ s h ν S / E redox S ,
= ϕ e c l h ν / E redox ,
C min 1 / α K τ a .

Metrics