Abstract

Holographic digital data storage has been accomplished for over 16,000 bits per page in a page-organized hologram memory, but without a page composer. Instead, data is input sequentially as it arrives at the memory inputs, one bit at a time, and with random access to any bit address within the page. To do this, a new kind of page synthesizer was developed, and excellent results have been obtained using it to record page arrays of data in Fe-doped LiNbO3. In addition, certain interesting and surprising effects of recording and reading out data in this material by page synthesis will be described, including a discrete, step by step erasure effect unlike the expected gradual erasure of data by successive multiple exposures.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. LaMacchia, C. J. Vincelette, Appl. Opt. 7, 1857 (1968).
    [CrossRef] [PubMed]
  2. J. J. Amodei, W. Phillips, D. L. Staebler, Appl. Opt. 11, 390 (1972).
    [CrossRef] [PubMed]
  3. G. W. Stroke, F. H. Westervelt, R. G. Zech, Proc. IEEE 59, 109 (1967).
    [CrossRef]
  4. H. J. Caulfield, S. Lu, J. L. Harris, J. Opt. Soc. Am. 58, 1003 (1968).
    [CrossRef]
  5. E. G. Ramberg, RCA Rev. 33(1), 34 (1972).
  6. W. Phillips, J. J. Amodei, D. L. Staebler, RCA Rev. 33(1), 104 (1972).

1972 (3)

E. G. Ramberg, RCA Rev. 33(1), 34 (1972).

W. Phillips, J. J. Amodei, D. L. Staebler, RCA Rev. 33(1), 104 (1972).

J. J. Amodei, W. Phillips, D. L. Staebler, Appl. Opt. 11, 390 (1972).
[CrossRef] [PubMed]

1968 (2)

1967 (1)

G. W. Stroke, F. H. Westervelt, R. G. Zech, Proc. IEEE 59, 109 (1967).
[CrossRef]

Amodei, J. J.

W. Phillips, J. J. Amodei, D. L. Staebler, RCA Rev. 33(1), 104 (1972).

J. J. Amodei, W. Phillips, D. L. Staebler, Appl. Opt. 11, 390 (1972).
[CrossRef] [PubMed]

Caulfield, H. J.

Harris, J. L.

LaMacchia, J. T.

Lu, S.

Phillips, W.

J. J. Amodei, W. Phillips, D. L. Staebler, Appl. Opt. 11, 390 (1972).
[CrossRef] [PubMed]

W. Phillips, J. J. Amodei, D. L. Staebler, RCA Rev. 33(1), 104 (1972).

Ramberg, E. G.

E. G. Ramberg, RCA Rev. 33(1), 34 (1972).

Staebler, D. L.

W. Phillips, J. J. Amodei, D. L. Staebler, RCA Rev. 33(1), 104 (1972).

J. J. Amodei, W. Phillips, D. L. Staebler, Appl. Opt. 11, 390 (1972).
[CrossRef] [PubMed]

Stroke, G. W.

G. W. Stroke, F. H. Westervelt, R. G. Zech, Proc. IEEE 59, 109 (1967).
[CrossRef]

Vincelette, C. J.

Westervelt, F. H.

G. W. Stroke, F. H. Westervelt, R. G. Zech, Proc. IEEE 59, 109 (1967).
[CrossRef]

Zech, R. G.

G. W. Stroke, F. H. Westervelt, R. G. Zech, Proc. IEEE 59, 109 (1967).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

Proc. IEEE (1)

G. W. Stroke, F. H. Westervelt, R. G. Zech, Proc. IEEE 59, 109 (1967).
[CrossRef]

RCA Rev. (2)

E. G. Ramberg, RCA Rev. 33(1), 34 (1972).

W. Phillips, J. J. Amodei, D. L. Staebler, RCA Rev. 33(1), 104 (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Sequential-input page synthesizer for random-access recording of a digital data array in a single hologram page.

Figure 2
Figure 2

Sequential-input hologram memory: write mode. The page deflector chooses the page to be written into, while the data beam deflector chooses the address within that page.

Fig. 3
Fig. 3

Sequential-input hologram memory: read mode. The reference beam alone is directed to the page hologram selected, and the data are read out as normal in parallel.

Fig. 4
Fig. 4

Reconstruction of a 64 × 64 element array synthesized one element at a time. All elements are binary “ones.”

Fig. 5
Fig. 5

Reconstruction of a 64 × 64 element array, with about half of the elements ones and the other half zeroes.

Fig. 6
Fig. 6

Demonstration of gray-scale recording capability. This reconstrcted image was photographed while new data were being inputted in the bottom few lines.

Fig. 7
Fig. 7

Reconstruction of a 128 × 128 element array, all ones, with good SNR but showing the discrete erasure steps that occurred during the recording.

Fig. 8
Fig. 8

Reconstruction of a 128 × 128 element array, with both ones and zeros, showing the increased background noise compared with the all ones array of Fig. 7.

Fig. 9
Fig. 9

Reconstruction with too strong a reference beam, showing slightly displaced ghost image formed during readout.

Fig. 10
Fig. 10

Reconstruction with too strong a reference beam, showing pronounced fringes formed during readout.

Metrics