Abstract

Experimental observations of large particle signals generated by the passage of a particle through the interference pattern of a laser interferometer are reported. The results show that particle size can be determined from analysis of the signal. The influence of large particle sizes in determining the velocity of the particle from the signal is discussed.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Farmer, Appl. Opt. 11, 2603 (1972).
    [CrossRef] [PubMed]
  2. D. B. Brayton, W. H. Goethert, Trans. Inst. Soc. Am. 10, 41 (1971).
  3. W. M. Farmer, J. O. Hornkohl, Appl. Opt. 12, 2636 (1973).
    [CrossRef] [PubMed]
  4. W. P. Chu, L. E. Mauldin, Appl. Phy. Lett. 22, 557 (1973).
    [CrossRef]
  5. J. R. Hodkinson, I. Greenleaves, J. Opt. Soc. Am. 53, 577 (1963).
    [CrossRef]
  6. F. Durst, “Development and Application of Optical Anemometer,” Ph.D. Thesis, Heat Transfer Section, Dept. of Mech. Eng., Imperial College, London (1972).

1973 (2)

W. P. Chu, L. E. Mauldin, Appl. Phy. Lett. 22, 557 (1973).
[CrossRef]

W. M. Farmer, J. O. Hornkohl, Appl. Opt. 12, 2636 (1973).
[CrossRef] [PubMed]

1972 (1)

1971 (1)

D. B. Brayton, W. H. Goethert, Trans. Inst. Soc. Am. 10, 41 (1971).

1963 (1)

Brayton, D. B.

D. B. Brayton, W. H. Goethert, Trans. Inst. Soc. Am. 10, 41 (1971).

Chu, W. P.

W. P. Chu, L. E. Mauldin, Appl. Phy. Lett. 22, 557 (1973).
[CrossRef]

Durst, F.

F. Durst, “Development and Application of Optical Anemometer,” Ph.D. Thesis, Heat Transfer Section, Dept. of Mech. Eng., Imperial College, London (1972).

Farmer, W. M.

Goethert, W. H.

D. B. Brayton, W. H. Goethert, Trans. Inst. Soc. Am. 10, 41 (1971).

Greenleaves, I.

Hodkinson, J. R.

Hornkohl, J. O.

Mauldin, L. E.

W. P. Chu, L. E. Mauldin, Appl. Phy. Lett. 22, 557 (1973).
[CrossRef]

Appl. Opt. (2)

Appl. Phy. Lett. (1)

W. P. Chu, L. E. Mauldin, Appl. Phy. Lett. 22, 557 (1973).
[CrossRef]

J. Opt. Soc. Am. (1)

Trans. Inst. Soc. Am. (1)

D. B. Brayton, W. H. Goethert, Trans. Inst. Soc. Am. 10, 41 (1971).

Other (1)

F. Durst, “Development and Application of Optical Anemometer,” Ph.D. Thesis, Heat Transfer Section, Dept. of Mech. Eng., Imperial College, London (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Experimental and Theoretical illuminating intensity distribution in the probe volume.

Fig. 2
Fig. 2

Experimental and theoretical comparison for a long narrow cylinder at different orientation angles.

Fig. 3
Fig. 3

Photographs of the far field patterns and images of large aluminum and glass spheres.

Fig. 4
Fig. 4

Variation in the visibility as a function of C/δ for constant θ.

Fig. 5
Fig. 5

Comparison of theoretical and experimental paraxial visibility for a spherical particle.

Fig. 6
Fig. 6

Average signal visibility as a function of particle trajectory for different D/δ.

Fig. 7
Fig. 7

Variation of visibility for different D/δ and solid collection angle.

Fig. 8
Fig. 8

Variation of paraxial relative signal magnitude with solid collection angle.

Fig. 9
Fig. 9

Variation in the visibility as a function of observation angle, solid collection angle, and D/δ

Fig. 10
Fig. 10

Examples of different types of phase reversals.

Fig. 11
Fig. 11

Comparison of number density measurements by image computer with those made by an interferometer.

Fig. 12
Fig. 12

Photograph of interferometer signal vs time as the number of particles passing through the probe volume changes.

Fig. 13
Fig. 13

Plot of the Doppler frequency of a large particle as measured from a signal photograph.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L = w / cos ( β ) .
V sin [ π w tan ( β ) / δ ] sin [ π D cos ( β ) / δ ] [ π w tan ( β ) / δ ] [ π D cos ( β ) / δ ] .
ψ = ± tan - 1 { ( x / R ) [ sin 2 ( θ ) - ( x / R ) 2 cos ( θ ) ] - 1 / 2 } ,
r max = a cos [ ( θ - x / R ) / 2 ] , r min = a cos [ ( θ + x / R ) / 2 ] ,

Metrics