Abstract

Measurements of stray light suppression with mirrors, lenses, and baffle systems from four zodiacal light and one noctilucent cloud space experiments are reported. The method used to derive the total stray light suppression from these measurements is given. The predicted residual stray light intensity of about 10−11 sr−1 to 10−10 sr−1 corresponds to ≈1% of the zodiacal light intensity and is confirmed by the available inflight results. Therefore accurate photometry of the zodiacal light is possible from a sunlit rocket or satellite.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Newkirk, D. Bohlin, Appl. Opt. 2, 131 (1963).
    [Crossref]
  2. H. Zirin, G. Newkirk, Appl. Opt. 2, 977 (1963).
  3. R. M. MacQueen, Appl. Opt. 7, 1149 (1968).
    [Crossref] [PubMed]
  4. G. R. Hostetter et al., Appl. Opt. 7, 1383 (1968).
    [PubMed]
  5. C. Wolff, Science 158, 1045 (1967).
    [Crossref] [PubMed]
  6. A. Rouy et al., Nature 232, 323 (1971).
    [Crossref] [PubMed]
  7. R. P. Heinisch, J. Spacecraft Rockets 8, 852 (1971).
    [Crossref]
  8. R. H. Munis, M. W. Finkel, Appl. Opt. 7, 2001 (1968).
    [Crossref] [PubMed]
  9. R. P. Heinisch, C. L. Jolliffe, Appl. Opt. 10, 2016 (1971).
    [Crossref] [PubMed]
  10. A. Boksenberg et al., Report on S59, ESTEC Contract No. 1045/70 G. W.
  11. A. Boksenberg et al., Report on S2/68, ESTEC Contract No. 1045/70 G. W.
  12. F. W. Schenkel, J. Brit. Interplanet. Soc. 26, 589 (1973).
  13. C. Leinert, Dudley Observatory Rep. No. 6 (1971).
  14. P. Jacquinot, B. Roizen-Dossier, in Progress in Optics, E. Wolf, Ed. (North-Holland, Amsterdam1964), Vol. 3, p. 29.
    [Crossref]
  15. J. B. McDaniel, Appl. Opt. 3, 152 (1964).
    [Crossref]
  16. J. H. Baldirge, NASA Rep. N65-36780 (1965).
  17. L. D. Landau, E. M. Lifshitz, Theoretical Physics (Pergamon Press, New York, 1964.
  18. A. Sommerfeld, in Die Differentialgleichungen und Integralgleichungen der Physik, P. Frank, Ed. (Braunschweig1935) Part 2, 826.
  19. V. A. Krasnopolskiy, Geomag. Aeron. 10, 638 (1970).
  20. W. F. J. Evans et al., J. Geophys. Res. 73, 2885 (1968).
    [Crossref]
  21. L. Wallace, R. A. Nidey, J. Geophys. Res. 69, 471 (1964).
    [Crossref]
  22. R. C. Schaeffer, W. G. Fastie, Appl. Opt. 11, 2289 (1972).
    [Crossref] [PubMed]
  23. J. P. Doering, W. G. Fastie, P. D. Feldman, J. Geophys. Res. 75, 4787 (1970).
    [Crossref]
  24. W. G. Fastie, Appl. Opt. 6, 397 (1967).
    [Crossref] [PubMed]
  25. P. D. Feldman, J. Geophys. Res. 78, 2010 (1973).
    [Crossref]
  26. J. L. Weinberg, Dudley Observatory; private communication.

1973 (2)

F. W. Schenkel, J. Brit. Interplanet. Soc. 26, 589 (1973).

P. D. Feldman, J. Geophys. Res. 78, 2010 (1973).
[Crossref]

1972 (1)

1971 (3)

R. P. Heinisch, C. L. Jolliffe, Appl. Opt. 10, 2016 (1971).
[Crossref] [PubMed]

A. Rouy et al., Nature 232, 323 (1971).
[Crossref] [PubMed]

R. P. Heinisch, J. Spacecraft Rockets 8, 852 (1971).
[Crossref]

1970 (2)

J. P. Doering, W. G. Fastie, P. D. Feldman, J. Geophys. Res. 75, 4787 (1970).
[Crossref]

V. A. Krasnopolskiy, Geomag. Aeron. 10, 638 (1970).

1968 (4)

1967 (2)

1964 (2)

L. Wallace, R. A. Nidey, J. Geophys. Res. 69, 471 (1964).
[Crossref]

J. B. McDaniel, Appl. Opt. 3, 152 (1964).
[Crossref]

1963 (2)

Baldirge, J. H.

J. H. Baldirge, NASA Rep. N65-36780 (1965).

Bohlin, D.

Boksenberg, A.

A. Boksenberg et al., Report on S59, ESTEC Contract No. 1045/70 G. W.

A. Boksenberg et al., Report on S2/68, ESTEC Contract No. 1045/70 G. W.

Doering, J. P.

J. P. Doering, W. G. Fastie, P. D. Feldman, J. Geophys. Res. 75, 4787 (1970).
[Crossref]

Evans, W. F. J.

W. F. J. Evans et al., J. Geophys. Res. 73, 2885 (1968).
[Crossref]

Fastie, W. G.

Feldman, P. D.

P. D. Feldman, J. Geophys. Res. 78, 2010 (1973).
[Crossref]

J. P. Doering, W. G. Fastie, P. D. Feldman, J. Geophys. Res. 75, 4787 (1970).
[Crossref]

Finkel, M. W.

Heinisch, R. P.

Hostetter, G. R.

Jacquinot, P.

P. Jacquinot, B. Roizen-Dossier, in Progress in Optics, E. Wolf, Ed. (North-Holland, Amsterdam1964), Vol. 3, p. 29.
[Crossref]

Jolliffe, C. L.

Krasnopolskiy, V. A.

V. A. Krasnopolskiy, Geomag. Aeron. 10, 638 (1970).

Landau, L. D.

L. D. Landau, E. M. Lifshitz, Theoretical Physics (Pergamon Press, New York, 1964.

Leinert, C.

C. Leinert, Dudley Observatory Rep. No. 6 (1971).

Lifshitz, E. M.

L. D. Landau, E. M. Lifshitz, Theoretical Physics (Pergamon Press, New York, 1964.

MacQueen, R. M.

McDaniel, J. B.

Munis, R. H.

Newkirk, G.

Nidey, R. A.

L. Wallace, R. A. Nidey, J. Geophys. Res. 69, 471 (1964).
[Crossref]

Roizen-Dossier, B.

P. Jacquinot, B. Roizen-Dossier, in Progress in Optics, E. Wolf, Ed. (North-Holland, Amsterdam1964), Vol. 3, p. 29.
[Crossref]

Rouy, A.

A. Rouy et al., Nature 232, 323 (1971).
[Crossref] [PubMed]

Schaeffer, R. C.

Schenkel, F. W.

F. W. Schenkel, J. Brit. Interplanet. Soc. 26, 589 (1973).

Sommerfeld, A.

A. Sommerfeld, in Die Differentialgleichungen und Integralgleichungen der Physik, P. Frank, Ed. (Braunschweig1935) Part 2, 826.

Wallace, L.

L. Wallace, R. A. Nidey, J. Geophys. Res. 69, 471 (1964).
[Crossref]

Weinberg, J. L.

J. L. Weinberg, Dudley Observatory; private communication.

Wolff, C.

C. Wolff, Science 158, 1045 (1967).
[Crossref] [PubMed]

Zirin, H.

Appl. Opt. (9)

Geomag. Aeron. (1)

V. A. Krasnopolskiy, Geomag. Aeron. 10, 638 (1970).

J. Brit. Interplanet. Soc. (1)

F. W. Schenkel, J. Brit. Interplanet. Soc. 26, 589 (1973).

J. Geophys. Res. (4)

W. F. J. Evans et al., J. Geophys. Res. 73, 2885 (1968).
[Crossref]

L. Wallace, R. A. Nidey, J. Geophys. Res. 69, 471 (1964).
[Crossref]

J. P. Doering, W. G. Fastie, P. D. Feldman, J. Geophys. Res. 75, 4787 (1970).
[Crossref]

P. D. Feldman, J. Geophys. Res. 78, 2010 (1973).
[Crossref]

J. Spacecraft Rockets (1)

R. P. Heinisch, J. Spacecraft Rockets 8, 852 (1971).
[Crossref]

Nature (1)

A. Rouy et al., Nature 232, 323 (1971).
[Crossref] [PubMed]

Science (1)

C. Wolff, Science 158, 1045 (1967).
[Crossref] [PubMed]

Other (8)

A. Boksenberg et al., Report on S59, ESTEC Contract No. 1045/70 G. W.

A. Boksenberg et al., Report on S2/68, ESTEC Contract No. 1045/70 G. W.

C. Leinert, Dudley Observatory Rep. No. 6 (1971).

P. Jacquinot, B. Roizen-Dossier, in Progress in Optics, E. Wolf, Ed. (North-Holland, Amsterdam1964), Vol. 3, p. 29.
[Crossref]

J. H. Baldirge, NASA Rep. N65-36780 (1965).

L. D. Landau, E. M. Lifshitz, Theoretical Physics (Pergamon Press, New York, 1964.

A. Sommerfeld, in Die Differentialgleichungen und Integralgleichungen der Physik, P. Frank, Ed. (Braunschweig1935) Part 2, 826.

J. L. Weinberg, Dudley Observatory; private communication.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic presentation of the path the stray light takes into the instrument. Istray is the resulting stray light intensity (see text), Iobj the intensity of the observed object. F0, F1, F2 are the incident and attenuated fluxes, respectively.

Fig. 2
Fig. 2

Geometry of the stray light measurements on mirrors (a) and lenses (b). The light source was a tungsten ribbon lamp or a He–Ne continuous laser (λ = 632.8 nm).

Fig. 3
Fig. 3

Measured scattering coefficients for mirrors. Measurements at different wavelengths are shown for a slightly dusty mirror (a) and a glass mirror without coating (b). The latter were multiplied by 10 before plotting for better readibility. The remaining measurements were performed with a laser (632.8 nm). Group c contains a standard 50-mm glass mirror (●) and a quartz mirror (▲), group d summarizes the result for three high quality mirrors, two 20-mm glass mirrors with (▲) and without (●) coating of MgF2 and a 50-mm metal mirror (□). The accuracy of an individual measurement is ±10%.

Fig. 4
Fig. 4

Measured scattering coefficients for lenses. The focal ratio of the lenses is f/D ≈ 4, the wavelength 632.8 nm. Curve a is for a slightly dusty lens, b for a 50-mm standard quartz lens cleaned with collodium (●) or in an ultrasonic bath (○). For measurement c on a 66-mm standard glass lens the effect of internal double reflection was suppressed. Curve d is for a 40-mm quartz lens with higher surface quality, e for a carefully polished (λ/20) plane parallel plate of Suprasil I. The accuracy of an individual measurement, if not indicated in the figure, is ±10%.

Fig. 5
Fig. 5

Model for scattering on a baffle edge. For case A we assume Fresnel diffraction, for case B isotropic reflection.

Fig. 6
Fig. 6

Outline of baffle system and optics for the experiments discussed in Sec. IV.B. Shown are the zodiacal light rocket experiment R-214 (a), the noctilucent cloud photometer (b), the Pioneer 10/11 imaging photopolarimeter (c), the Skylab contamination/zodiacal light photometer (d), the Helios zodiacal light photometers 15° (f) and 90° (e). A scale of 10 cm is shown with each photometer. The nominal range for the angle of incidence θ for the illumination of the baffle system is given. The position of the aperture during the attenuation measurements is indicated by A.

Fig. 7
Fig. 7

Measured attenuation factors of baffle systems as a function of the angle θ between light source and viewing direction. Shown are results for the noctilucent cloud photometer (□), the Skylab contamination/zodiacal light photometer (▲) and the Helios photometer 90° (○). For the Helios photometer 15° (●) the measurements were performed as a function of the azimuth angle Φ at a constant elevation of 5.3° with respect to the baffle opening, which corresponds to the illumination in flight. Some error bars have been omitted because they are covered by the symbol size or for better readibility. The effect of an illuminated knife edge visible to the optis can be most clearly seen in the curve for the noctilucent cloud photometer at 75°.

Tables (1)

Tables Icon

Table I Observed and Predicted Total Stray Light Suppression

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S d ( θ ) 5.6 × 10 8 ( λ / a ) ( 1 / θ 3 ) sr - 1 .
S d r 2.8 × 10 - 2 × r 2 ( f / D ) 2 sr - 1 .
F ( R , δ ) F 0 = 1 2 π 2 · λ 2 · R + R 0 R · R 0 · sin 2 δ ,

Metrics