Abstract

Within the program of the Complex Atmospheric Energetics Experiment (CAENEX-70) and with the help of an IL-18 aircraft flying laboratory, we have measured spectral (in the 0.4–2.4-μm interval) radiative fluxes, the energy balance, and flux divergence of energy in a free atmosphere (at 0.3–8.4-km heights) with Z = 55° over a sandy surface. Simultaneously, the results of aerosol measurements gave the physical explanation to many peculiar features of optical observations. In particular, aerosol absorption of shortwave radiation has been isolated. The probable variability of aerosol absorption has been estimated on the basis of observational data obtained on other days.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Ya. Kondratyev, Radiation in the Atmosphere (Academic Press, New York, 1969).
  2. K. Ya. Kondratyev, Radiation Processes in the Atmosphere (WMO, Monograph No. 309, Geneva, 1972).
  3. A. J. Drummond, J. R. Hickey, Proc. Intern. Conf. Weather Modification (American Meteorological Society, Boston, 1971), p. 267.
  4. K. Ya. Kondratyev, I. L. Vulis, G. A. Nikolsky, Meteorol. Gidrologiya 7 (1969).
  5. K. Ya. Kondratyev, L. R. Dmitrieva-Arago, G. A. Nikolsky, L. V. Samoilova, Meteorol. Gidrologiya 11 (1970).
  6. J. M. Mitchell, J. Appl. Meteorol. 10 (4), 703 (1971).
    [CrossRef]
  7. H. E. Landsberg, Symposium on Physical and Dynamical Climatology, Leningrad (1971).
  8. K. Ya. Kondratyev et al., WMO Bull. 20, July (1971). ).
  9. K. Ya. Kondratyev et al., WMO Bull. 22, (1973).
  10. K. Ya. Kondratyev et al., WMO Bull. 20, 160 (1971).
  11. K. Ya. Kondratyev et al., “Spectral radiative flux divergence in the troposphere,” in Radiative Transfer in the Atmosphere (University Publishing House, Leningrad, 1972), pp. 15–37.
  12. M. P. Thekaekara, A. J. Drummond, “Proposed Standard Values for the Solar Constant and its Spectral Components,” (NASA-95FC) Preprint, May (1970).

1973 (1)

K. Ya. Kondratyev et al., WMO Bull. 22, (1973).

1971 (3)

K. Ya. Kondratyev et al., WMO Bull. 20, 160 (1971).

J. M. Mitchell, J. Appl. Meteorol. 10 (4), 703 (1971).
[CrossRef]

K. Ya. Kondratyev et al., WMO Bull. 20, July (1971). ).

1970 (1)

K. Ya. Kondratyev, L. R. Dmitrieva-Arago, G. A. Nikolsky, L. V. Samoilova, Meteorol. Gidrologiya 11 (1970).

1969 (1)

K. Ya. Kondratyev, I. L. Vulis, G. A. Nikolsky, Meteorol. Gidrologiya 7 (1969).

Dmitrieva-Arago, L. R.

K. Ya. Kondratyev, L. R. Dmitrieva-Arago, G. A. Nikolsky, L. V. Samoilova, Meteorol. Gidrologiya 11 (1970).

Drummond, A. J.

A. J. Drummond, J. R. Hickey, Proc. Intern. Conf. Weather Modification (American Meteorological Society, Boston, 1971), p. 267.

M. P. Thekaekara, A. J. Drummond, “Proposed Standard Values for the Solar Constant and its Spectral Components,” (NASA-95FC) Preprint, May (1970).

Hickey, J. R.

A. J. Drummond, J. R. Hickey, Proc. Intern. Conf. Weather Modification (American Meteorological Society, Boston, 1971), p. 267.

Kondratyev, K. Ya.

K. Ya. Kondratyev et al., WMO Bull. 22, (1973).

K. Ya. Kondratyev et al., WMO Bull. 20, 160 (1971).

K. Ya. Kondratyev et al., WMO Bull. 20, July (1971). ).

K. Ya. Kondratyev, L. R. Dmitrieva-Arago, G. A. Nikolsky, L. V. Samoilova, Meteorol. Gidrologiya 11 (1970).

K. Ya. Kondratyev, I. L. Vulis, G. A. Nikolsky, Meteorol. Gidrologiya 7 (1969).

K. Ya. Kondratyev, Radiation in the Atmosphere (Academic Press, New York, 1969).

K. Ya. Kondratyev et al., “Spectral radiative flux divergence in the troposphere,” in Radiative Transfer in the Atmosphere (University Publishing House, Leningrad, 1972), pp. 15–37.

K. Ya. Kondratyev, Radiation Processes in the Atmosphere (WMO, Monograph No. 309, Geneva, 1972).

Landsberg, H. E.

H. E. Landsberg, Symposium on Physical and Dynamical Climatology, Leningrad (1971).

Mitchell, J. M.

J. M. Mitchell, J. Appl. Meteorol. 10 (4), 703 (1971).
[CrossRef]

Nikolsky, G. A.

K. Ya. Kondratyev, L. R. Dmitrieva-Arago, G. A. Nikolsky, L. V. Samoilova, Meteorol. Gidrologiya 11 (1970).

K. Ya. Kondratyev, I. L. Vulis, G. A. Nikolsky, Meteorol. Gidrologiya 7 (1969).

Samoilova, L. V.

K. Ya. Kondratyev, L. R. Dmitrieva-Arago, G. A. Nikolsky, L. V. Samoilova, Meteorol. Gidrologiya 11 (1970).

Thekaekara, M. P.

M. P. Thekaekara, A. J. Drummond, “Proposed Standard Values for the Solar Constant and its Spectral Components,” (NASA-95FC) Preprint, May (1970).

Vulis, I. L.

K. Ya. Kondratyev, I. L. Vulis, G. A. Nikolsky, Meteorol. Gidrologiya 7 (1969).

J. Appl. Meteorol. (1)

J. M. Mitchell, J. Appl. Meteorol. 10 (4), 703 (1971).
[CrossRef]

Meteorol. Gidrologiya (2)

K. Ya. Kondratyev, I. L. Vulis, G. A. Nikolsky, Meteorol. Gidrologiya 7 (1969).

K. Ya. Kondratyev, L. R. Dmitrieva-Arago, G. A. Nikolsky, L. V. Samoilova, Meteorol. Gidrologiya 11 (1970).

WMO Bull. (3)

K. Ya. Kondratyev et al., WMO Bull. 20, July (1971). ).

K. Ya. Kondratyev et al., WMO Bull. 22, (1973).

K. Ya. Kondratyev et al., WMO Bull. 20, 160 (1971).

Other (6)

K. Ya. Kondratyev et al., “Spectral radiative flux divergence in the troposphere,” in Radiative Transfer in the Atmosphere (University Publishing House, Leningrad, 1972), pp. 15–37.

M. P. Thekaekara, A. J. Drummond, “Proposed Standard Values for the Solar Constant and its Spectral Components,” (NASA-95FC) Preprint, May (1970).

K. Ya. Kondratyev, Radiation in the Atmosphere (Academic Press, New York, 1969).

K. Ya. Kondratyev, Radiation Processes in the Atmosphere (WMO, Monograph No. 309, Geneva, 1972).

A. J. Drummond, J. R. Hickey, Proc. Intern. Conf. Weather Modification (American Meteorological Society, Boston, 1971), p. 267.

H. E. Landsberg, Symposium on Physical and Dynamical Climatology, Leningrad (1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Upward spectral radiation fluxes at different levels in the troposphere. (b) Downward spectral radiation fluxes at different levels in the troposphere.

Fig. 2
Fig. 2

(a) Upward spectral radiation fluxes calculated from the data of the SPI-2M spectrometer. 1—H = 8400 m; 2—H = 2850 m; 3—H = 300 m. (b) Downward spectral radiation fluxes calculated from the data of the SPI-2M spectrometer.

Fig. 3
Fig. 3

(a) Spectral radiative flux divergence in the troposphere in the 0.4–2.4-μm region. 1—From the data of the K-2 spectrometer; 2—aerosol absorption curve approximated by the dependence λ−1; 3—from the data of the SPI-2M spectrometer. (b) Relative spectral radiative flux divergence in the troposphere. 1—From the data of the K-2 spectrometer; 2—aerosol absorption curve approximated by the dependence λ−1; 3—from the data of the SPI-2M spectrometer.

Fig. 4
Fig. 4

Relative spectral radiative flux divergence (βλ) and spectral variation of the imaginary part of the complex index of refraction of hematite (χ).

Fig. 5
Fig. 5

Absorption cross section for aerosol particles of different size (μm).

Fig. 6
Fig. 6

Comparison of relative vertical profiles of the concentration N(p) of aerosol particles and relative flux divergences: the mean one ( β ¯) and at wavelength λ = 430 μm (β430).

Fig. 7
Fig. 7

Relative spectral radiative flux divergence variation during a single day (a) and for different days (b).

Fig. 8
Fig. 8

Daily variation of the number concentration of aerosol particles (r ≥ 0.2 μm) in the atmospheric surface layer (the town of Rylsk, 1967).

Fig. 9
Fig. 9

Daily variations of atmospheric optical thickness T, the aerosol attenuation coefficient α (km−1) in the surface layer, relative humidity E%: curves 1,2—T, curves 3,4—E%, curves 5,6—α(km−1) according to Kondratyev et al.9

Fig. 10
Fig. 10

Washing out of aerosol particles of different size by precipitation ΔN(r)N0(r). (1) - - - - - Reconstruction of particle size spectrum 2 h after a short shower; (2) - · - · - fine drizzling rain; (3) - - - · - - - snowfall; (4) – – × – – fine lasting rain; (5) - - - × - - - short shower.

Tables (1)

Tables Icon

Table I Concentration of Various Chemical Elements in the Aerosol of the Surface Layer and the Troposphere (μg·m−3)

Metrics