Abstract

The properties and oscillation characteristics of very long cw xenon lasers are discussed and pertinent long laser experiments described. High-gain 3.508-μm xenon laser amplifiers were used in these experiments. Laser cavity lengths of up to 30 km were studied. Spectrum analyses revealed complex oscillation spectra exhibiting the characteristics of both homogeneous and inhomogeneous laser mode structures. Long laser Doppler experiments, Q-switching studies, and modulation experiments were performed. Applications to atmospheric pollution detection are discussed.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Peressini, G. J. Linford, IEEE J. Quantum Electron. QE-4, 657 (1968).
    [Crossref]
  2. N. V. Kravtsov, U. P. Yatsenko, Moskovski Universitet Vestnik Seriia III, Fiz. Astron. 12, 734 (1971).
  3. V. M. Dytynko, L. S. Korniyenko, N. V. Kravtsov, N. I. Naumkin, Radio Eng. Electron Phys. 16, 563 (1971).
  4. G. J. Linford, L. W. Hill, “Nd:YAG Long Lasers,” (to be published 1974 in Applied Optics).
    [Crossref]
  5. E. R. Peck, J. Opt. Soc. Am. 52, 253 (1962).
    [Crossref]
  6. R. Beer, D. Marjaniemi, Appl. Opt. 5, 1191 (1966).
    [Crossref] [PubMed]
  7. W. L. Faust, R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
    [Crossref]
  8. R. V. Ambartsumyan et al., IEEE J. Quantum Electron. QE-2, 442 (1966).
    [Crossref]
  9. P. L. Hanst, “Spectroscopic Methods for Air Pollution Measurement,” in Advances in Environmental Science and Technology (Wiley, New York, 1971), p. 115.
  10. G. J. Linford, “Final Report of the Laser Exhaust Measurement Program,” Hughes Aircraft Co., HAC Reference No. C3767, Contract 68-62-0203 from Environmental Protection Agency, Nov.1972, pp. 2–10.
  11. G. J. Linford, Appl. Opt. 12, 1130 (1973).
    [Crossref] [PubMed]
  12. G. J. Linford, IEEE J. Quantum Electron. QE-8, 477 (1972).
    [Crossref]
  13. M. Thekaekara et al., “The Spectrum of Xenon I,” Johns Hopkins Spectroscopic Rep. No. 12 (1955).
  14. G. J. Linford, “New Oscillation Dynamics of Noble Gas Lasers,” PhD thesis, U. of Utah, Salt Lake City (1971).
  15. G. J. Linford, “Effects of Isotopes on the Oscillation Characteristics of Xenon Long Lasers,” (to be published).
  16. L. Allen, D. G. C. Jones, D. G. Schofield, J. Opt. Soc. Am. 59, 842 (1969).
    [Crossref]
  17. S. C. Wang, R. L. Byer, A. E. Siegman, Appl. Phys. Lett. 17, 120 (1970).
    [Crossref]
  18. L. Casperson, A. Yariv, Appl. Phys. Lett. 17, 259 (1970).
    [Crossref]
  19. R. Vetter, Compt. Rend. Acad. Sci. Ser. B, 265, 1414 (1967).
  20. A. Yariv, in Quantum Electronics (Wiley, New York, 1967), p. 267.

1973 (1)

1972 (1)

G. J. Linford, IEEE J. Quantum Electron. QE-8, 477 (1972).
[Crossref]

1971 (2)

N. V. Kravtsov, U. P. Yatsenko, Moskovski Universitet Vestnik Seriia III, Fiz. Astron. 12, 734 (1971).

V. M. Dytynko, L. S. Korniyenko, N. V. Kravtsov, N. I. Naumkin, Radio Eng. Electron Phys. 16, 563 (1971).

1970 (2)

S. C. Wang, R. L. Byer, A. E. Siegman, Appl. Phys. Lett. 17, 120 (1970).
[Crossref]

L. Casperson, A. Yariv, Appl. Phys. Lett. 17, 259 (1970).
[Crossref]

1969 (1)

1968 (1)

E. R. Peressini, G. J. Linford, IEEE J. Quantum Electron. QE-4, 657 (1968).
[Crossref]

1967 (1)

R. Vetter, Compt. Rend. Acad. Sci. Ser. B, 265, 1414 (1967).

1966 (2)

R. V. Ambartsumyan et al., IEEE J. Quantum Electron. QE-2, 442 (1966).
[Crossref]

R. Beer, D. Marjaniemi, Appl. Opt. 5, 1191 (1966).
[Crossref] [PubMed]

1964 (1)

W. L. Faust, R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
[Crossref]

1962 (1)

Allen, L.

Ambartsumyan, R. V.

R. V. Ambartsumyan et al., IEEE J. Quantum Electron. QE-2, 442 (1966).
[Crossref]

Beer, R.

Byer, R. L.

S. C. Wang, R. L. Byer, A. E. Siegman, Appl. Phys. Lett. 17, 120 (1970).
[Crossref]

Casperson, L.

L. Casperson, A. Yariv, Appl. Phys. Lett. 17, 259 (1970).
[Crossref]

Dytynko, V. M.

V. M. Dytynko, L. S. Korniyenko, N. V. Kravtsov, N. I. Naumkin, Radio Eng. Electron Phys. 16, 563 (1971).

Faust, W. L.

W. L. Faust, R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
[Crossref]

Hanst, P. L.

P. L. Hanst, “Spectroscopic Methods for Air Pollution Measurement,” in Advances in Environmental Science and Technology (Wiley, New York, 1971), p. 115.

Hill, L. W.

G. J. Linford, L. W. Hill, “Nd:YAG Long Lasers,” (to be published 1974 in Applied Optics).
[Crossref]

Jones, D. G. C.

Korniyenko, L. S.

V. M. Dytynko, L. S. Korniyenko, N. V. Kravtsov, N. I. Naumkin, Radio Eng. Electron Phys. 16, 563 (1971).

Kravtsov, N. V.

V. M. Dytynko, L. S. Korniyenko, N. V. Kravtsov, N. I. Naumkin, Radio Eng. Electron Phys. 16, 563 (1971).

N. V. Kravtsov, U. P. Yatsenko, Moskovski Universitet Vestnik Seriia III, Fiz. Astron. 12, 734 (1971).

Linford, G. J.

G. J. Linford, Appl. Opt. 12, 1130 (1973).
[Crossref] [PubMed]

G. J. Linford, IEEE J. Quantum Electron. QE-8, 477 (1972).
[Crossref]

E. R. Peressini, G. J. Linford, IEEE J. Quantum Electron. QE-4, 657 (1968).
[Crossref]

G. J. Linford, “Final Report of the Laser Exhaust Measurement Program,” Hughes Aircraft Co., HAC Reference No. C3767, Contract 68-62-0203 from Environmental Protection Agency, Nov.1972, pp. 2–10.

G. J. Linford, L. W. Hill, “Nd:YAG Long Lasers,” (to be published 1974 in Applied Optics).
[Crossref]

G. J. Linford, “New Oscillation Dynamics of Noble Gas Lasers,” PhD thesis, U. of Utah, Salt Lake City (1971).

G. J. Linford, “Effects of Isotopes on the Oscillation Characteristics of Xenon Long Lasers,” (to be published).

Marjaniemi, D.

McFarlane, R. A.

W. L. Faust, R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
[Crossref]

Naumkin, N. I.

V. M. Dytynko, L. S. Korniyenko, N. V. Kravtsov, N. I. Naumkin, Radio Eng. Electron Phys. 16, 563 (1971).

Peck, E. R.

Peressini, E. R.

E. R. Peressini, G. J. Linford, IEEE J. Quantum Electron. QE-4, 657 (1968).
[Crossref]

Schofield, D. G.

Siegman, A. E.

S. C. Wang, R. L. Byer, A. E. Siegman, Appl. Phys. Lett. 17, 120 (1970).
[Crossref]

Thekaekara, M.

M. Thekaekara et al., “The Spectrum of Xenon I,” Johns Hopkins Spectroscopic Rep. No. 12 (1955).

Vetter, R.

R. Vetter, Compt. Rend. Acad. Sci. Ser. B, 265, 1414 (1967).

Wang, S. C.

S. C. Wang, R. L. Byer, A. E. Siegman, Appl. Phys. Lett. 17, 120 (1970).
[Crossref]

Yariv, A.

L. Casperson, A. Yariv, Appl. Phys. Lett. 17, 259 (1970).
[Crossref]

A. Yariv, in Quantum Electronics (Wiley, New York, 1967), p. 267.

Yatsenko, U. P.

N. V. Kravtsov, U. P. Yatsenko, Moskovski Universitet Vestnik Seriia III, Fiz. Astron. 12, 734 (1971).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. C. Wang, R. L. Byer, A. E. Siegman, Appl. Phys. Lett. 17, 120 (1970).
[Crossref]

L. Casperson, A. Yariv, Appl. Phys. Lett. 17, 259 (1970).
[Crossref]

Compt. Rend. Acad. Sci. Ser. B (1)

R. Vetter, Compt. Rend. Acad. Sci. Ser. B, 265, 1414 (1967).

IEEE J. Quantum Electron. (3)

G. J. Linford, IEEE J. Quantum Electron. QE-8, 477 (1972).
[Crossref]

R. V. Ambartsumyan et al., IEEE J. Quantum Electron. QE-2, 442 (1966).
[Crossref]

E. R. Peressini, G. J. Linford, IEEE J. Quantum Electron. QE-4, 657 (1968).
[Crossref]

J. Appl. Phys. (1)

W. L. Faust, R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
[Crossref]

J. Opt. Soc. Am. (2)

Moskovski Universitet Vestnik Seriia III, Fiz. Astron. (1)

N. V. Kravtsov, U. P. Yatsenko, Moskovski Universitet Vestnik Seriia III, Fiz. Astron. 12, 734 (1971).

Radio Eng. Electron Phys. (1)

V. M. Dytynko, L. S. Korniyenko, N. V. Kravtsov, N. I. Naumkin, Radio Eng. Electron Phys. 16, 563 (1971).

Other (7)

G. J. Linford, L. W. Hill, “Nd:YAG Long Lasers,” (to be published 1974 in Applied Optics).
[Crossref]

P. L. Hanst, “Spectroscopic Methods for Air Pollution Measurement,” in Advances in Environmental Science and Technology (Wiley, New York, 1971), p. 115.

G. J. Linford, “Final Report of the Laser Exhaust Measurement Program,” Hughes Aircraft Co., HAC Reference No. C3767, Contract 68-62-0203 from Environmental Protection Agency, Nov.1972, pp. 2–10.

M. Thekaekara et al., “The Spectrum of Xenon I,” Johns Hopkins Spectroscopic Rep. No. 12 (1955).

G. J. Linford, “New Oscillation Dynamics of Noble Gas Lasers,” PhD thesis, U. of Utah, Salt Lake City (1971).

G. J. Linford, “Effects of Isotopes on the Oscillation Characteristics of Xenon Long Lasers,” (to be published).

A. Yariv, in Quantum Electronics (Wiley, New York, 1967), p. 267.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Geometry of long laser cavity.

Fig. 2
Fig. 2

Dual amplifier long laser cavity.

Fig. 3
Fig. 3

Effects of remote retroreflector aperture on laser output power.

Fig. 4
Fig. 4

Beat spectrum of dual-cavity Doppler shifted long laser.

Fig. 5
Fig. 5

Oscilloscope traces illustrating mode-beating effects in 165-m and 283-m xenon long laser cavities.

Fig. 6
Fig. 6

Beat spectrum of 14.5-m xenon long laser.

Fig. 7
Fig. 7

Beat spectrum of 283-m xenon long laser.

Fig. 8
Fig. 8

Envelope of 6.3-km xenon long laser beat spectrum.

Equations (51)

Equations on this page are rendered with MathJax. Learn more.

G 0 2 1 / ξ T 2 r 1 r 2 ,
G 0 = exp ( σ / N l ) ,
ϕ s h ν / σ τ ,
d P s = h ν A 32 N g ( ν ) d ν d V .
d P s = h ν A 32 N g ( ν ) [ ( d Ω ) / ( 4 π ) ] d ν d V .
P s = h ν A 32 N g ( ν ) exp [ σ N ( l - z ) ] [ ( d Ω ) / ( 4 π ) ] d ν d V ,
σ = [ ( c 2 A 32 ) / ( 8 π ν 2 ) ] g ( ν ) .
P s = ϕ s A Ω [ exp ( σ N l ) - 1 ] 3 / 2 4 [ σ N l exp ( σ N l ) ] 1 / 2 .
[ 4 ( G 0 ln G 0 ) 1 / 2 ] / [ ( G 0 - 1 ) 3 / 2 ] Ω ,
[ 4 ( ln G 0 ) 1 / 2 ] / G 0 Ω .
[ 4 ( ln G 0 2 ) 1 / 2 ] / G 0 2 Ω ,
ξ I = ( d 2 / a 2 )     for d a ,
ξ II = ( π a d ) 4 / [ ( π a 2 + 4 λ L ) 2 ( π d 2 + 4 λ L ) 2 ] ,
ξ III = π 2 d 4 / ( π d 2 + 4 λ L ) 2 ,
ξ IV = π 2 a 4 / 4 ( π a 2 + 4 λ L ) 2 ,
d = 2 [ ( 2 k + 1 ) λ L ] 1 / 2
d = 2 [ ( 2 k ) λ L ] 1 / 2 .
Δ ν D = [ ( 2 v ) / c ] ν 0 .
G e ξ r 1 r 2 exp 2 ( σ N l - α L 1 ) ,
α = β ( λ ) C ,
Δ ν c = c / 2 L .
ω d = { [ W 03 σ l c Δ ν ( N 0 - N ) ] / L Δ ν D } 1 / 2 ,
Δ ν hole Δ ν [ 1 + ( λ 3 P ) / ( 4 π 2 h c Δ ν A ) ] 1 / 2 ,
L = c / 2 Δ ν .
ν = ( 1 - 2 β ) ν 0 ,
Ω 0 = ( π a 2 ) / ( 16 l 2 ) .
V ( ϕ ) = V 0 ( 2 ϕ - sin 2 ϕ ) ,
cos ϕ = ( 2 γ L ) / a ,
N ˙ 3 = W 03 N 0 - B ^ 32 ( N 3 - N 2 )
N ˙ 2 = B ^ 32 ( N 3 - N 2 ) - ( N 2 / τ ) ,
B ^ 32 = ( σ Δ ν c Φ ) / Δ ν D ,
n = ( N 3 - N 2 ) / N 0             and            η = ( N 3 + N 2 ) / N 0 ,
n ˙ = W 03 ( 1 - η ) + [ ( η - n ) / 2 τ ] - [ ( 2 σ c Δ ν ) / ( Δ ν D ) ] Φ n
η ˙ = W 03 ( 1 - η ) - [ ( η - n ) / 2 τ ] .
Φ ˙ = B ^ 32 n N 0 ( l / N ) - α 0 Φ ,
ϕ = ( Φ L ) / ( N 0 l ) ,
n ˙ = W 03 ( 1 - η ) + [ ( η - n ) / 2 τ ] - [ ( 2 σ c N 0 Δ ν ϕ l ) / ( L Δ ν D ) ] n ,
η ˙ = W 03 ( 1 - η ) - [ ( η - n ) / 2 τ ] ,
ϕ ˙ = [ ( σ c N 0 l Δ ν ϕ ) / ( L Δ ν D ) ] n - α 0 ϕ .
n = n s - β , η = η s - , and ϕ = ϕ s + δ ,
β ˙ = [ ( - β ) / 2 τ ] + 2 α 0 [ δ - ( ϕ s / n s ) β ] ,
˙ = ( β - ) / ( 2 τ ) ,
δ ˙ = - ϕ s α ( t ) - α 0 ( ϕ s / n s ) β .
[ i ω - ( 1 / 2 τ ) - 2 α 0 ( ϕ s / n s ) ] B + ( 1 / 2 τ ) E + 2 α 0 D = 0 ,
( 1 / 2 τ ) B + [ i ω - ( 1 / 2 τ ) ] E = 0 ,
α 0 ( ϕ s / n s ) B - i ω D = - ϕ s A .
R ( ω ) = α 0 2 α 0 ( ϕ s n s ) + 1 2 τ ( 4 ω 2 τ 2 4 ω 2 τ 2 + 1 ) - i ω ( 4 ω 2 τ 2 + 2 4 ω 2 τ 2 + 1 ) ω 2 ( 4 ω 2 τ 2 + 2 4 ω 2 τ 2 + 1 ) - 2 α 0 2 ϕ s n s + i ω [ 2 α 0 ϕ s n s + 1 2 τ ( 4 ω 2 τ 2 4 ω 2 τ 2 + 1 ) ]
R ( ω ) = - [ α 0 D ( ω ) ] / [ ϕ s A ( ω ) ]
R ( ω ) = α 0 3 ( ϕ s / n s ) [ α 0 ( ϕ s / n s ) + ω 2 τ ] + i ω α 0 { [ α 0 ( ϕ s / n s ) + ω 2 τ ] 2 + ω 2 - α 0 2 ( ϕ s / n s ) } [ ω 2 - α 0 2 ( ϕ s / n s ) ] 2 + ω 2 [ α 0 ( ϕ s / n s ) + ω 2 τ ] 2 .
ω = ω 0 = α 0 ( ϕ s / n s ) 1 / 2 ,
ω d = { [ W 03 σ c Δ ν l ( N 0 - N ) ] / ( L Δ ν D ) } 1 / 2 ,

Metrics