Abstract

The problem of early termination of laser action in flashlamp pumped dye lasers is investigated. It is found that in high power, short pulse duration systems shock waves are created in the dye solution. Index inhomogeneities in the laser medium are created, and these lead to the termination of laser action. The velocity of propagation of the disturbance is measured. Some possibilities concerning the origin of these shock waves are examined. A design scheme that overcomes the effect of the disturbance in short pulse (≤5 μsec) systems is described.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. P. Sorokin, J. R. Lankard, IBM J. Res. Devel. 11, 148 (Mar.1967).
    [CrossRef]
  2. O. G. Peterson, S. A. Tuccio, B. B. Snavely, Appl. Phys. Lett. 17, 245 (1970).
    [CrossRef]
  3. P. Anliker, M. Gassmann, H. Weber, Opt. Commun. 5, 137 (1972) reported 1.2% efficiency, which is the highest we found in the literature. Similar efficiency (1.1%) was obtained by J. Bunkenberg, Rev. Sci. Instrum. 43, 1611 (1972).
    [CrossRef]
  4. P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1967).
    [CrossRef]
  5. W. Schmidt, F. P. Schafer, Naturforsch. 22a, 1563 (1967).
  6. B. B. Snavely, F. P. Schafer, Phys. Lett. 28A, 728 (1969).
  7. B. B. Snavely, Proc. IEEE 57, 1374 (1969).
    [CrossRef]
  8. R. Pappalardo, H. Samelson, A. Lempicki, IEEE J. Quantum Electron. QE-6, 716 (1970).
    [CrossRef]
  9. J. B. Marling, L. L. Wood, D. W. Gregg, IEEE J. Quantum Electron. QE-7, 498 (1971).
    [CrossRef]
  10. S. Blit, U. Ganiel, to be published.
  11. H. W. Furumoto, H. L. Ceccon, Appl. Opt. 8, 1613 (1969).
    [CrossRef] [PubMed]
  12. T. F. Ewanizky, R. H. Wright, Appl. Opt. 12, 120 (1973).
    [CrossRef] [PubMed]
  13. C. M. Ferrar, Rev. Sci. Instrum. 40, 1436 (1969).
    [CrossRef]
  14. Ya. B. Zel’dovich, Theory of Shock Waves and Introduction to Gas Dynamics, Chap. 8. English translation of Russian original published by the Foreign Technology Div. U.S. Air Force Systems Command; distributed by Clearinghouse for Federal Scientific and Technical Information, Springfield, Va. 22151.
  15. B. B. Snavely, discussion following paper No. 16.8, 1973 Conference on Laser Engineering and Applications, Washington D.C., May 1973.
  16. T. F. Ewanizky, R. H. Wright, H. H. Theissing, Appl. Phys. Lett. 22, 520 (1973).
    [CrossRef]

1973 (2)

T. F. Ewanizky, R. H. Wright, Appl. Opt. 12, 120 (1973).
[CrossRef] [PubMed]

T. F. Ewanizky, R. H. Wright, H. H. Theissing, Appl. Phys. Lett. 22, 520 (1973).
[CrossRef]

1972 (1)

P. Anliker, M. Gassmann, H. Weber, Opt. Commun. 5, 137 (1972) reported 1.2% efficiency, which is the highest we found in the literature. Similar efficiency (1.1%) was obtained by J. Bunkenberg, Rev. Sci. Instrum. 43, 1611 (1972).
[CrossRef]

1971 (1)

J. B. Marling, L. L. Wood, D. W. Gregg, IEEE J. Quantum Electron. QE-7, 498 (1971).
[CrossRef]

1970 (2)

O. G. Peterson, S. A. Tuccio, B. B. Snavely, Appl. Phys. Lett. 17, 245 (1970).
[CrossRef]

R. Pappalardo, H. Samelson, A. Lempicki, IEEE J. Quantum Electron. QE-6, 716 (1970).
[CrossRef]

1969 (4)

C. M. Ferrar, Rev. Sci. Instrum. 40, 1436 (1969).
[CrossRef]

H. W. Furumoto, H. L. Ceccon, Appl. Opt. 8, 1613 (1969).
[CrossRef] [PubMed]

B. B. Snavely, F. P. Schafer, Phys. Lett. 28A, 728 (1969).

B. B. Snavely, Proc. IEEE 57, 1374 (1969).
[CrossRef]

1967 (3)

P. P. Sorokin, J. R. Lankard, IBM J. Res. Devel. 11, 148 (Mar.1967).
[CrossRef]

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1967).
[CrossRef]

W. Schmidt, F. P. Schafer, Naturforsch. 22a, 1563 (1967).

Anliker, P.

P. Anliker, M. Gassmann, H. Weber, Opt. Commun. 5, 137 (1972) reported 1.2% efficiency, which is the highest we found in the literature. Similar efficiency (1.1%) was obtained by J. Bunkenberg, Rev. Sci. Instrum. 43, 1611 (1972).
[CrossRef]

Blit, S.

S. Blit, U. Ganiel, to be published.

Ceccon, H. L.

Ewanizky, T. F.

T. F. Ewanizky, R. H. Wright, Appl. Opt. 12, 120 (1973).
[CrossRef] [PubMed]

T. F. Ewanizky, R. H. Wright, H. H. Theissing, Appl. Phys. Lett. 22, 520 (1973).
[CrossRef]

Ferrar, C. M.

C. M. Ferrar, Rev. Sci. Instrum. 40, 1436 (1969).
[CrossRef]

Furumoto, H. W.

Ganiel, U.

S. Blit, U. Ganiel, to be published.

Gassmann, M.

P. Anliker, M. Gassmann, H. Weber, Opt. Commun. 5, 137 (1972) reported 1.2% efficiency, which is the highest we found in the literature. Similar efficiency (1.1%) was obtained by J. Bunkenberg, Rev. Sci. Instrum. 43, 1611 (1972).
[CrossRef]

Gregg, D. W.

J. B. Marling, L. L. Wood, D. W. Gregg, IEEE J. Quantum Electron. QE-7, 498 (1971).
[CrossRef]

Hammond, E. C.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1967).
[CrossRef]

Lankard, J. R.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1967).
[CrossRef]

P. P. Sorokin, J. R. Lankard, IBM J. Res. Devel. 11, 148 (Mar.1967).
[CrossRef]

Lempicki, A.

R. Pappalardo, H. Samelson, A. Lempicki, IEEE J. Quantum Electron. QE-6, 716 (1970).
[CrossRef]

Marling, J. B.

J. B. Marling, L. L. Wood, D. W. Gregg, IEEE J. Quantum Electron. QE-7, 498 (1971).
[CrossRef]

Moruzzi, V. L.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1967).
[CrossRef]

Pappalardo, R.

R. Pappalardo, H. Samelson, A. Lempicki, IEEE J. Quantum Electron. QE-6, 716 (1970).
[CrossRef]

Peterson, O. G.

O. G. Peterson, S. A. Tuccio, B. B. Snavely, Appl. Phys. Lett. 17, 245 (1970).
[CrossRef]

Samelson, H.

R. Pappalardo, H. Samelson, A. Lempicki, IEEE J. Quantum Electron. QE-6, 716 (1970).
[CrossRef]

Schafer, F. P.

B. B. Snavely, F. P. Schafer, Phys. Lett. 28A, 728 (1969).

W. Schmidt, F. P. Schafer, Naturforsch. 22a, 1563 (1967).

Schmidt, W.

W. Schmidt, F. P. Schafer, Naturforsch. 22a, 1563 (1967).

Snavely, B. B.

O. G. Peterson, S. A. Tuccio, B. B. Snavely, Appl. Phys. Lett. 17, 245 (1970).
[CrossRef]

B. B. Snavely, F. P. Schafer, Phys. Lett. 28A, 728 (1969).

B. B. Snavely, Proc. IEEE 57, 1374 (1969).
[CrossRef]

B. B. Snavely, discussion following paper No. 16.8, 1973 Conference on Laser Engineering and Applications, Washington D.C., May 1973.

Sorokin, P. P.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1967).
[CrossRef]

P. P. Sorokin, J. R. Lankard, IBM J. Res. Devel. 11, 148 (Mar.1967).
[CrossRef]

Theissing, H. H.

T. F. Ewanizky, R. H. Wright, H. H. Theissing, Appl. Phys. Lett. 22, 520 (1973).
[CrossRef]

Tuccio, S. A.

O. G. Peterson, S. A. Tuccio, B. B. Snavely, Appl. Phys. Lett. 17, 245 (1970).
[CrossRef]

Weber, H.

P. Anliker, M. Gassmann, H. Weber, Opt. Commun. 5, 137 (1972) reported 1.2% efficiency, which is the highest we found in the literature. Similar efficiency (1.1%) was obtained by J. Bunkenberg, Rev. Sci. Instrum. 43, 1611 (1972).
[CrossRef]

Wood, L. L.

J. B. Marling, L. L. Wood, D. W. Gregg, IEEE J. Quantum Electron. QE-7, 498 (1971).
[CrossRef]

Wright, R. H.

T. F. Ewanizky, R. H. Wright, Appl. Opt. 12, 120 (1973).
[CrossRef] [PubMed]

T. F. Ewanizky, R. H. Wright, H. H. Theissing, Appl. Phys. Lett. 22, 520 (1973).
[CrossRef]

Zel’dovich, Ya. B.

Ya. B. Zel’dovich, Theory of Shock Waves and Introduction to Gas Dynamics, Chap. 8. English translation of Russian original published by the Foreign Technology Div. U.S. Air Force Systems Command; distributed by Clearinghouse for Federal Scientific and Technical Information, Springfield, Va. 22151.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

T. F. Ewanizky, R. H. Wright, H. H. Theissing, Appl. Phys. Lett. 22, 520 (1973).
[CrossRef]

O. G. Peterson, S. A. Tuccio, B. B. Snavely, Appl. Phys. Lett. 17, 245 (1970).
[CrossRef]

IBM J. Res. Devel. (1)

P. P. Sorokin, J. R. Lankard, IBM J. Res. Devel. 11, 148 (Mar.1967).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. Pappalardo, H. Samelson, A. Lempicki, IEEE J. Quantum Electron. QE-6, 716 (1970).
[CrossRef]

J. B. Marling, L. L. Wood, D. W. Gregg, IEEE J. Quantum Electron. QE-7, 498 (1971).
[CrossRef]

J. Chem. Phys. (1)

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1967).
[CrossRef]

Naturforsch. (1)

W. Schmidt, F. P. Schafer, Naturforsch. 22a, 1563 (1967).

Opt. Commun. (1)

P. Anliker, M. Gassmann, H. Weber, Opt. Commun. 5, 137 (1972) reported 1.2% efficiency, which is the highest we found in the literature. Similar efficiency (1.1%) was obtained by J. Bunkenberg, Rev. Sci. Instrum. 43, 1611 (1972).
[CrossRef]

Phys. Lett. (1)

B. B. Snavely, F. P. Schafer, Phys. Lett. 28A, 728 (1969).

Proc. IEEE (1)

B. B. Snavely, Proc. IEEE 57, 1374 (1969).
[CrossRef]

Rev. Sci. Instrum. (1)

C. M. Ferrar, Rev. Sci. Instrum. 40, 1436 (1969).
[CrossRef]

Other (3)

Ya. B. Zel’dovich, Theory of Shock Waves and Introduction to Gas Dynamics, Chap. 8. English translation of Russian original published by the Foreign Technology Div. U.S. Air Force Systems Command; distributed by Clearinghouse for Federal Scientific and Technical Information, Springfield, Va. 22151.

B. B. Snavely, discussion following paper No. 16.8, 1973 Conference on Laser Engineering and Applications, Washington D.C., May 1973.

S. Blit, U. Ganiel, to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental scheme used to observe the duration of dye laser pulses, in the coaxial configuration.

Fig. 2
Fig. 2

Experimental scheme used to study transmission of light through the inner liquid cell as a function of time after the flash-lamp pulse.

Fig. 3
Fig. 3

Experimental arrangement used to photograph the shock wave propagation in water.

Fig. 4
Fig. 4

Photographs obtained with the set up shown in Fig. 3. The shadow in the upper right is the profile of the lamp holder, horizontal and vertical lines are drawn at 1-cm separation. (a) Before firing the flashlamp. (b) 5 μsec after firing the flashlamp. (c) 11 μsec after firing the flashlamp. (d) 17 μsec after firing the flashlamp. (e) 24 μsec after firing the flashlamp.

Fig. 5
Fig. 5

Oscilloscope traces of flashlamp pulse (lower) and dye laser pulse (upper), in the arrangement designed to avoid early termination (see text).

Metrics