Abstract

Threshold conditions for bulk and surface parasitic oscillations, which may limit energy storage in large aperture Nd:glass disk lasers, have been developed as a function of material parameters. An expression describing the energy storage distribution within a disk was used to determine the mode that will be most limiting for a particular disk design. Additional modes that may be limiting in special cases were identified and their effects evaluated. These results are useful in developing disk laser designs that minimize parasitic effects.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Swain et al., J. Appl. Phys. 403973 (1969).
    [CrossRef]
  2. J. M. McMahon, J. L. Emmett, J. F. Holzrichter, J. B. Trenholme, IEEE J. Quantum Electron. QE-9, 992 (1972).
  3. J. B. Trenholme, “Fluorescence Amplification and Parasitic Oscillation Limitations in Disk Lasers,” NRL Memorandum Rep. 2480, July1972.
  4. J. M. Soures, L. M. Goldman, J. J. Lubin, Appl. Opt. 12, 927 (1973).
    [CrossRef] [PubMed]
  5. D. C. Brown, Appl. Opt. 12, 2215 (1973).
    [CrossRef] [PubMed]
  6. Examples include Hoya BSDL-5 and Owens-Illinois 72446 black solder glasses.
  7. In amplifier configurations, laser disks are generally protected from uv flashlamp light by Pyrex shielding.

1973 (2)

1972 (1)

J. M. McMahon, J. L. Emmett, J. F. Holzrichter, J. B. Trenholme, IEEE J. Quantum Electron. QE-9, 992 (1972).

1969 (1)

J. E. Swain et al., J. Appl. Phys. 403973 (1969).
[CrossRef]

Brown, D. C.

Emmett, J. L.

J. M. McMahon, J. L. Emmett, J. F. Holzrichter, J. B. Trenholme, IEEE J. Quantum Electron. QE-9, 992 (1972).

Goldman, L. M.

Holzrichter, J. F.

J. M. McMahon, J. L. Emmett, J. F. Holzrichter, J. B. Trenholme, IEEE J. Quantum Electron. QE-9, 992 (1972).

Lubin, J. J.

McMahon, J. M.

J. M. McMahon, J. L. Emmett, J. F. Holzrichter, J. B. Trenholme, IEEE J. Quantum Electron. QE-9, 992 (1972).

Soures, J. M.

Swain, J. E.

J. E. Swain et al., J. Appl. Phys. 403973 (1969).
[CrossRef]

Trenholme, J. B.

J. M. McMahon, J. L. Emmett, J. F. Holzrichter, J. B. Trenholme, IEEE J. Quantum Electron. QE-9, 992 (1972).

J. B. Trenholme, “Fluorescence Amplification and Parasitic Oscillation Limitations in Disk Lasers,” NRL Memorandum Rep. 2480, July1972.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

J. M. McMahon, J. L. Emmett, J. F. Holzrichter, J. B. Trenholme, IEEE J. Quantum Electron. QE-9, 992 (1972).

J. Appl. Phys. (1)

J. E. Swain et al., J. Appl. Phys. 403973 (1969).
[CrossRef]

Other (3)

J. B. Trenholme, “Fluorescence Amplification and Parasitic Oscillation Limitations in Disk Lasers,” NRL Memorandum Rep. 2480, July1972.

Examples include Hoya BSDL-5 and Owens-Illinois 72446 black solder glasses.

In amplifier configurations, laser disks are generally protected from uv flashlamp light by Pyrex shielding.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Ray paths for bulk and face modes of parasitic oscillation.

Fig. 2
Fig. 2

Schematic of the ray geometry used in calculating the parasitic threshold condition for a disk with a partially transmitting edge coating.

Fig. 3
Fig. 3

Threshold for bulk mode parasitic oscillation, ( α ¯ D ) crit, as a function of single pass edge cladding transmission, T, for Owens-Illinois ED-2 laser glass. Curves for four values of edge cladding refractive index, n3, are shown.

Fig. 4
Fig. 4

Threshold for surface mode parasitic oscillations, (αsD)crit, as a function of single pass edge cladding transmission, T, for Owens-Illinois ED-2 laser glass. Curves for four values of cladding refractive index, n3, are shown.

Fig. 5
Fig. 5

Ratio of surface to average gain coefficients, α s / α ¯, as a function of percent disk doping × disk thickness, PXo.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

R exp ( n α ¯ D ) = 1 ,
R N exp ( α s D ) = 1 ,
α s D > n α ¯ D + ln ( R / R N ) .
R = R 1 + ( 1 R 1 ) 2 R 2 ,
R { [ sin ( θ 2 θ 3 ) ] / [ sin ( θ 2 + θ 3 ) ] } 2 + exp ( 2 β l sec θ 3 ) ,
R 2 = T 2 sec θ 3 ·
R [ ( n 1 2 n 2 2 + n 3 2 ) 1 / 2 n 1 ( n 1 2 n 2 3 + n 3 2 ) 1 / 2 + n 1 ] 2 + T 2 n 3 ( n 1 2 n 2 2 + n 3 2 ) 1 / 2 .
( α ¯ D ) crit = n 1 n 2 . ln { [ ( n 1 2 n 2 2 + n 3 2 ) 1 / 2 n 1 ( n 1 2 n 2 2 + n 3 2 ) 1 / 2 + n 1 ] 2 + T 2 n 3 ( n 1 2 n 2 2 + n 3 2 ) 1 / 2 } .
R 1 = [ ( n 2 n 3 ) / ( n 2 + n 3 ) ] 2 ,
R 2 = [ ( n 3 n 1 ) / ( n 3 + n 1 ) ] 2 T 2 .
R N [ ( n 2 n 3 ) / ( n 2 + n 3 ) ] 2 + [ ( n 3 n 1 ) / ( n 3 + n 1 ) ] 2 T 2 .
( α s D ) crit = ln { [ ( n 2 n 3 ) / ( n 2 + n 3 ) ] 2 + [ ( n 3 n 1 ) / ( n 3 + n 1 ) ] 2 T 2 } .
f ( u ) = [ K / ( 1 + 0.7708 u ) 1.25 ] ,
α ( X ) = [ ( K P ) / ( 1 + 0.7708 P X ) 1.25 ] + { ( K P ) / [ 1 + 0.7708 P ( X o X ) ] 1.25 } ,
α s = K P { 1 + [ 1 / ( 1 + 0.7708 P X o ) 1.25 ] } .
α ¯ = 1 X o o x o α ( x ) d x = 10.4 K X o [ 1 1 ( 1 + 0.7708 P X o ) 0.25 ] .
α s / α ¯ = P X o / 10.4 { [ 1 + 1 ( 1 + 0.7708 P X o ) 1.25 ] / [ 1 1 ( 1 + 0.7708 P X o ) 0.25 ] } .
r 1 = r o ( n 3 / n 2 ) .
( α 1.35 D ) crit < ( 2 / 3 ) ( α 1.06 D ) crit .

Metrics