Abstract

Studies of peak transmission drift in narrow-band interference filters have shown that there exist two mechanisms that cause drift toward shorter wavelengths. One is dependent on the thermal history of the filter and is discussed in Part 1 of this paper. The other is dependent on the exposure of the filter to radiation. For ZnS–cryolite filters of the design [(HL)4H8(LH)4L]3L−1, it is experimentally demonstrated that the filters are most sensitive to radiation in a 100-Å band centered at approximately 3900 Å. The drift rate in the focal plane of an f/20 solar image is approximately 3 Å/100 h of exposure. Further, it is also shown by model calculations that the observed radiation-induced drift is consistent with the hypothesis that the optical thickness of ZnS decreases in proportion to the radiant energy absorbed.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Title, T. Pope, J. P. Andelin, Appl. Opt. 13, Nov.2675 (1974).
    [CrossRef] [PubMed]
  2. J. C. Averson, R. N. Griffin, B. D. Pearson, Appl. Opt. 8, 11 (1969).
  3. G. Kopperman, K. Krebs, Z. Phys. 156, 238 (1959).
  4. J. M. Pearson, Thin Solid Films 6, 349 (1970).
    [CrossRef]

1974 (1)

1970 (1)

J. M. Pearson, Thin Solid Films 6, 349 (1970).
[CrossRef]

1969 (1)

J. C. Averson, R. N. Griffin, B. D. Pearson, Appl. Opt. 8, 11 (1969).

1959 (1)

G. Kopperman, K. Krebs, Z. Phys. 156, 238 (1959).

Andelin, J. P.

Averson, J. C.

J. C. Averson, R. N. Griffin, B. D. Pearson, Appl. Opt. 8, 11 (1969).

Griffin, R. N.

J. C. Averson, R. N. Griffin, B. D. Pearson, Appl. Opt. 8, 11 (1969).

Kopperman, G.

G. Kopperman, K. Krebs, Z. Phys. 156, 238 (1959).

Krebs, K.

G. Kopperman, K. Krebs, Z. Phys. 156, 238 (1959).

Pearson, B. D.

J. C. Averson, R. N. Griffin, B. D. Pearson, Appl. Opt. 8, 11 (1969).

Pearson, J. M.

J. M. Pearson, Thin Solid Films 6, 349 (1970).
[CrossRef]

Pope, T.

Title, A. M.

Appl. Opt. (2)

J. C. Averson, R. N. Griffin, B. D. Pearson, Appl. Opt. 8, 11 (1969).

A. M. Title, T. Pope, J. P. Andelin, Appl. Opt. 13, Nov.2675 (1974).
[CrossRef] [PubMed]

Thin Solid Films (1)

J. M. Pearson, Thin Solid Films 6, 349 (1970).
[CrossRef]

Z. Phys. (1)

G. Kopperman, K. Krebs, Z. Phys. 156, 238 (1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Dye laser photographs at mean center and ±1.5 Å from mean center transmission band. Filter used was in a blue unblocked rectangular beam.

Fig. 2
Fig. 2

Optical schematic of five-frequency test assembly.

Fig. 3
Fig. 3

Drift of wavelength of peak transmission vs effective hours for the five filter bands.

Fig. 4
Fig. 4

Dye laser photography of the test blocker after 133 h and 450 h. The center spot was caused by an optical alignment system not shown in Fig. 2.

Fig. 5
Fig. 5

Drift in center wavelength vs wavelength of illumination after 200 relative h.

Fig. 6
Fig. 6

Transmission vs wavelength in the rectangular beam pattern (radiated)(a) and outside of the rectangular beam pattern (nonradiated)(b) of the filter shown in Fig. 1.

Fig. 7
Fig. 7

Calculated shift in angstroms vs relative energy for the five-filter band (solid line); measure shift in angstroms vs relative hours (dashed line).

Fig. 8
Fig. 8

Transmission vs wavelength for simulated radiation (a) and normal profile without layer modification (b).

Tables (1)

Tables Icon

Table I Characteristics of Bandpass Filter System

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k = α e β / λ ;
α = 2.07 × 10 10 β = 7.3 × 10 4

Metrics