Abstract

The application of multiplex spectrometry to cryogenically cooled LWIR extrinsic photodetectors is limited by system noise. This noise limitation results in a detector NEP that is directly proportional to bandwidth. Therefore, multiplex schemes that require increased bandwidth are not productive of real advantage. However, doubly encoded systems that are based on 2n − 1 or n + N − 1 measurements have the potential to provide a real throughput gain proportional to the number of elements used on the throughput matrix.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Despain, F. R. Brown, A. J. Steed, D. J. Baker, “A Large-Aperture FIELD–Widened Interferometer-Spectrometer for Airglow Studies,” Aspen International Conference on Fourier Spectroscopy, 1970, AFCRL-71-0019 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1970), pp. 293–300.
  2. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic Press, New York, 1972).
  3. R. N. Ibbett, D. Aspinall, J. F. Grainger, Appl. Opt. 7, 1089 (1968).
    [CrossRef] [PubMed]
  4. M. J. E. Golay, J. Opt. Soc. Am. 39, 437 (1949).
    [CrossRef] [PubMed]
  5. P. B. Fellget, thesis, Cambridge University (1951); J. Phys. Rad. 19, 187 (1958).
  6. M. Harwit, Appl. Opt. 10, 1416 (1971).
    [CrossRef]
  7. M. Harwit, P. G. Phillips, T. Fine, N. J. A. Sloane, Appl. Opt. 9, 1149 (1970).
    [CrossRef] [PubMed]
  8. W. L. Wolfe, Ed., Handbook of Military Infrared Technology (Office of Naval Research, Washington, D.C., 1965), pp. 515–516.
  9. C. L. Wyatt, “Infrared Helium-Cooled Circular-Variable Spectrometer, Model HS-1,” Final Report, AFCRL-71-0340, Contract F19628-67-C-0322, Electro-Dynamics Labs., Utah State University (15Sept.1971).
  10. C. L. Wyatt, D. J. Baker, D. G. Frodsham, “A Direct Coupled Low Noise Preamplifier for Cryogenically Cooled Photoconductive IR Detectors,” Accepted for publication in Infrared Phys. (1974).
    [CrossRef]
  11. P. G. Phillips, M. Harwit, Appl. Opt. 10, 2780 (1971).
    [CrossRef] [PubMed]
  12. M. Harwit, Cornell University; personal communication, 7July1972.

1971 (2)

1970 (1)

1968 (1)

1949 (1)

Aspinall, D.

Baker, D. J.

A. M. Despain, F. R. Brown, A. J. Steed, D. J. Baker, “A Large-Aperture FIELD–Widened Interferometer-Spectrometer for Airglow Studies,” Aspen International Conference on Fourier Spectroscopy, 1970, AFCRL-71-0019 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1970), pp. 293–300.

C. L. Wyatt, D. J. Baker, D. G. Frodsham, “A Direct Coupled Low Noise Preamplifier for Cryogenically Cooled Photoconductive IR Detectors,” Accepted for publication in Infrared Phys. (1974).
[CrossRef]

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic Press, New York, 1972).

Brown, F. R.

A. M. Despain, F. R. Brown, A. J. Steed, D. J. Baker, “A Large-Aperture FIELD–Widened Interferometer-Spectrometer for Airglow Studies,” Aspen International Conference on Fourier Spectroscopy, 1970, AFCRL-71-0019 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1970), pp. 293–300.

Despain, A. M.

A. M. Despain, F. R. Brown, A. J. Steed, D. J. Baker, “A Large-Aperture FIELD–Widened Interferometer-Spectrometer for Airglow Studies,” Aspen International Conference on Fourier Spectroscopy, 1970, AFCRL-71-0019 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1970), pp. 293–300.

Fellget, P. B.

P. B. Fellget, thesis, Cambridge University (1951); J. Phys. Rad. 19, 187 (1958).

Fine, T.

Frodsham, D. G.

C. L. Wyatt, D. J. Baker, D. G. Frodsham, “A Direct Coupled Low Noise Preamplifier for Cryogenically Cooled Photoconductive IR Detectors,” Accepted for publication in Infrared Phys. (1974).
[CrossRef]

Golay, M. J. E.

Grainger, J. F.

Harwit, M.

Ibbett, R. N.

Phillips, P. G.

Sloane, N. J. A.

Steed, A. J.

A. M. Despain, F. R. Brown, A. J. Steed, D. J. Baker, “A Large-Aperture FIELD–Widened Interferometer-Spectrometer for Airglow Studies,” Aspen International Conference on Fourier Spectroscopy, 1970, AFCRL-71-0019 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1970), pp. 293–300.

Wyatt, C. L.

C. L. Wyatt, “Infrared Helium-Cooled Circular-Variable Spectrometer, Model HS-1,” Final Report, AFCRL-71-0340, Contract F19628-67-C-0322, Electro-Dynamics Labs., Utah State University (15Sept.1971).

C. L. Wyatt, D. J. Baker, D. G. Frodsham, “A Direct Coupled Low Noise Preamplifier for Cryogenically Cooled Photoconductive IR Detectors,” Accepted for publication in Infrared Phys. (1974).
[CrossRef]

Appl. Opt. (4)

J. Opt. Soc. Am. (1)

Other (7)

P. B. Fellget, thesis, Cambridge University (1951); J. Phys. Rad. 19, 187 (1958).

A. M. Despain, F. R. Brown, A. J. Steed, D. J. Baker, “A Large-Aperture FIELD–Widened Interferometer-Spectrometer for Airglow Studies,” Aspen International Conference on Fourier Spectroscopy, 1970, AFCRL-71-0019 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1970), pp. 293–300.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic Press, New York, 1972).

W. L. Wolfe, Ed., Handbook of Military Infrared Technology (Office of Naval Research, Washington, D.C., 1965), pp. 515–516.

C. L. Wyatt, “Infrared Helium-Cooled Circular-Variable Spectrometer, Model HS-1,” Final Report, AFCRL-71-0340, Contract F19628-67-C-0322, Electro-Dynamics Labs., Utah State University (15Sept.1971).

C. L. Wyatt, D. J. Baker, D. G. Frodsham, “A Direct Coupled Low Noise Preamplifier for Cryogenically Cooled Photoconductive IR Detectors,” Accepted for publication in Infrared Phys. (1974).
[CrossRef]

M. Harwit, Cornell University; personal communication, 7July1972.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (1)

Tables Icon

Table I Signal Gain, Noise Increase, SNR, NEP Change, and Over-all Advantage for Various Multiplex Schemes in LWIR System-Noise-Limited Spectrometers

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

NEP = P i / SNR = e n / R ,
e jn = ( 4 k T R b Δ f ) 1 / 2 ,
NEP = { ( 4 k T Δ f ) 1 / 2 / [ R i ( R b ) 1 / 2 ] } .
e sn = e ss 2 π f R b C in ,
f = { ( 4 k T Δ f ) 1 / 2 / 2 π e ss ( R b ) 1 / 2 C in ] } .

Metrics