Abstract

Measurements of the temperature variation of the resonant absorption coefficient in shock heated CO2 gas (350–1600 K) using a laser source operating on the P(20) or P(18) transition are reported. Values obtained are compared with theory allowing for mixed mode contributions to absorption as well as dependence of the optical broadening cross section on temperature.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ely, T. K. McCubbin, Appl. Opt. 9, 1230 (1970).
    [CrossRef] [PubMed]
  2. R. L. Leonard, Ph.D. Thesis, University of Washington, Seattle (1972).
  3. S. A. Munjee, W. H. Christiansen, Appl. Opt. 12, 993 (1973).
    [CrossRef] [PubMed]
  4. E. T. Gerry, D. A. Leonard, Appl. Phys. Lett. 8, 227 (1966).
    [CrossRef]
  5. G. Herzberg, Molecular Spectra and Molecular Structure II, Infrared and Raman Spectra of Polyatomic Molecules (D. Van Nostrand, Princeton, N.J., 1960).
  6. R. R. Patty, E. R. Manring, J. A. Gardner, Appl. Opt. 7, 2241 (1968).
    [CrossRef] [PubMed]
  7. A. D. Devir, U. P. Oppenheim, Appl. Opt. 8, 2121 (1969).
    [CrossRef] [PubMed]
  8. W. Griffith, D. Brickl, V. Blackman, Phys. Rev. 102, 1209 (1956).
    [CrossRef]
  9. J. N. Bradley, Shock Waves in Chemistry and Physics (Methuen, London, 1962).
  10. R. L. Taylor, S. Bitterman, Rev. Mod. Phys. 41, 26 (1969).
    [CrossRef]

1973

1970

1969

A. D. Devir, U. P. Oppenheim, Appl. Opt. 8, 2121 (1969).
[CrossRef] [PubMed]

R. L. Taylor, S. Bitterman, Rev. Mod. Phys. 41, 26 (1969).
[CrossRef]

1968

1966

E. T. Gerry, D. A. Leonard, Appl. Phys. Lett. 8, 227 (1966).
[CrossRef]

1956

W. Griffith, D. Brickl, V. Blackman, Phys. Rev. 102, 1209 (1956).
[CrossRef]

Bitterman, S.

R. L. Taylor, S. Bitterman, Rev. Mod. Phys. 41, 26 (1969).
[CrossRef]

Blackman, V.

W. Griffith, D. Brickl, V. Blackman, Phys. Rev. 102, 1209 (1956).
[CrossRef]

Bradley, J. N.

J. N. Bradley, Shock Waves in Chemistry and Physics (Methuen, London, 1962).

Brickl, D.

W. Griffith, D. Brickl, V. Blackman, Phys. Rev. 102, 1209 (1956).
[CrossRef]

Christiansen, W. H.

Devir, A. D.

Ely, R.

Gardner, J. A.

Gerry, E. T.

E. T. Gerry, D. A. Leonard, Appl. Phys. Lett. 8, 227 (1966).
[CrossRef]

Griffith, W.

W. Griffith, D. Brickl, V. Blackman, Phys. Rev. 102, 1209 (1956).
[CrossRef]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure II, Infrared and Raman Spectra of Polyatomic Molecules (D. Van Nostrand, Princeton, N.J., 1960).

Leonard, D. A.

E. T. Gerry, D. A. Leonard, Appl. Phys. Lett. 8, 227 (1966).
[CrossRef]

Leonard, R. L.

R. L. Leonard, Ph.D. Thesis, University of Washington, Seattle (1972).

Manring, E. R.

McCubbin, T. K.

Munjee, S. A.

Oppenheim, U. P.

Patty, R. R.

Taylor, R. L.

R. L. Taylor, S. Bitterman, Rev. Mod. Phys. 41, 26 (1969).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

E. T. Gerry, D. A. Leonard, Appl. Phys. Lett. 8, 227 (1966).
[CrossRef]

Phys. Rev.

W. Griffith, D. Brickl, V. Blackman, Phys. Rev. 102, 1209 (1956).
[CrossRef]

Rev. Mod. Phys.

R. L. Taylor, S. Bitterman, Rev. Mod. Phys. 41, 26 (1969).
[CrossRef]

Other

J. N. Bradley, Shock Waves in Chemistry and Physics (Methuen, London, 1962).

G. Herzberg, Molecular Spectra and Molecular Structure II, Infrared and Raman Spectra of Polyatomic Molecules (D. Van Nostrand, Princeton, N.J., 1960).

R. L. Leonard, Ph.D. Thesis, University of Washington, Seattle (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the experimental system. I = iris; M = mirror; L = lens.

Fig. 2
Fig. 2

Upper trace: Ge:Au detector output showing decrease (upward deflection) in transmitted laser beam intensity through shock heated gas; 1 mV/div. Lower trace: Differential signal from piezotransducers located upstream and downstream of laser beampath; 0.5 V/div. Both traces 20 μsec/div. Initial CO2 pressure = 7 Torr.

Fig. 3
Fig. 3

Experimental and theoretical temperature dependence of the total absorption coefficient in CO2 for a frequency corresponding to line center of: —0— P(20) transition; - - - 0 - - - P(18) transition.

Tables (1)

Tables Icon

Table I Parameters for Computation of Total Absorption Coefficient

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

k ( ν ) = [ ( λ 0 2 ) / 8 π ] A 21 [ N 2 ( g 2 / g 1 ) N 1 ] g ( ν ) ,
A 21 = ( 64 π 4 / 3 h ) ( 1 / λ 0 3 ) { [ S ( J 2 ) K 21 ] / g 2 } ,
( N 2 g 2 N 1 g 1 ) = N T g 2 Q υ Q R 2 exp [ E 2 h c / k B T B 2 J 2 ( J 2 + 1 ) h c / k B T ] N T g 1 Q υ Q R 1 exp [ E 1 h c / k B T B 1 J 1 ( J 1 + 1 ) h c / k B T ] ,
Q υ = { [ 1 exp ( 1388.2 h c / k B T ) ] × [ 1 exp ( 667.4 h c / k B T ) ] 2 × [ 1 exp ( 2349.2 h c / k B T ) ] } 1 ,
Q R ( k B T ) / ( 2 h c B ) or ( k B T ) / ( h c B ) ,
g ( ν ) = ( Δ ν c / 2 π ) { 1 / [ ( ν ν 0 ) 2 + ( Δ ν c / 2 ) 2 ] } ,
Δ ν c = { 2 / [ ( 8 π k B T ) 1 / 2 ] } C CO 2 P . C CO 2
C CO 2 = K T n ,
k ( ν ) = k P ( ν ) + k R ( ν ) + k R π ( ν ) .
I = I 0 exp ( k l ) ,
k = ( 1 / l ) ln { 1 [ ( I 0 I ) / I 0 ] } .

Metrics