Abstract

Martin Marietta/NASA subcontracted the design, fabrication, testing, and installation of the multiple docking adapter S-190 experiment window assembly to Actron. In this paper we primarily treat the thermal-optical analysis aspect of the design phase. The window is a pane of BK 7 glass 59.18 cm × 44.91 cm × 4.06 cm. Though it must meet many mechanical specifications, the optical requirements, dictated by the high acuity, distortion-free S-190 multiband camera system, are the most severe. Under operating conditions over any 7.6-cm circular area, the maximum rms deviation from the best-fitting plane must be less than 12.0 nm, and from the reference plane through the entire window, 60.0 nm.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Timoshenko, J. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951), 506 pp.
  2. Schott Optical Glass (loose-leaf catalog), Jenaer Glaswerk Schott & Gen., Mainz, 1966.

Goodier, J.

S. Timoshenko, J. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951), 506 pp.

Timoshenko, S.

S. Timoshenko, J. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951), 506 pp.

Other

S. Timoshenko, J. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951), 506 pp.

Schott Optical Glass (loose-leaf catalog), Jenaer Glaswerk Schott & Gen., Mainz, 1966.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Orbital parameters.

Fig. 2
Fig. 2

Window/frame cross section.

Fig. 3
Fig. 3

Typical surface temperature distribution with hot case system parameters and two-piece frame heater.

Fig. 4
Fig. 4

Wavefront diagram.

Fig. 5
Fig. 5

Probability distribution: Case 20, 18 min, Circle 3.

Tables (3)

Tables Icon

Table I Thermal Constants

Tables Icon

Table II Pathlength Error Sources

Tables Icon

Table III Statistical Summary Case 20, 18 Min, Circle 3

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

T = T ¯ 1 + T ¯ 2 T ¯ 1 C z + m = 1 n = 1 [ A m n exp ( K m n z ) + B m n exp ( K m n z ) ] · sin ( m π x / a ) sin ( n π y / b )
2 T = ( 2 T / x 2 ) + ( 2 T / y 2 ) + ( 2 T / z 2 ) = 0
K m n 2 = ( m π / a ) 2 + ( n π / b ) 2 .
A m n + B m n = 4 a b 0 a 0 b ( T 1 T ¯ 1 ) sin ( m π x / a ) × sin ( n π y / b ) d x d y A m n exp ( K m n c ) + B m n exp ( K m n c ) = 4 a b 0 a 0 b ( T 2 T ¯ 2 ) sin ( m π x / a ) sin ( n π y / b ) d x d y .
T ¯ i = 1 a b 0 a 0 b T i ( x , y ) d x d y i = 1,2.
2 ψ = [ ( 1 + ν ) / ( 1 ν ) ] α T ,
u = ψ / x , υ = ψ / y , w = ψ / z .
ψ = 1 6 1 + ν 1 ν α c ( T ¯ 2 T ¯ 1 ) z 3 + 1 2 1 + ν 1 ν α T ¯ 1 z 2 + α 2 1 + ν 1 ν m = 1 n = 1 z K m n [ A m n exp ( K m n z ) B m n exp ( K m n z ) ] · sin m π x a sin n π y b + m = 1 n = 1 × [ C m n exp ( K m n z ) + D m n exp ( K m n z ) ] sin m π x a sin n π y b
w 0 = 1 2 1 + ν 1 ν [ ( T ¯ 2 T ¯ 1 ) z 2 c + 2 ( T ¯ 1 T 0 ) z ] + 1 2 1 + ν 1 ν α m = 1 n = 1 { [ A m n ( z + 1 K m n ) exp ( K m n z ) + B m n ( z 1 K m n ) exp ( K m n z ) ] c [ A m n exp ( K m n c ) B m n exp ( K m n c ) ] · [ exp ( K m n z ) + exp ( K m n z ) exp ( K m n c ) exp ( K m n c ) ] } sin m π x a sin n π y b .
w 1 = [ α ( T ¯ 2 T ¯ 1 ) / 2 c ] [ x ( a x ) + y ( b y ) ] .
w = w 0 + w 1 + w p ,
w p = p 768 D ( 16 x 4 24 a 2 x 2 + 5 a 4 + 16 y 4 24 b 2 y 2 + 5 b 4 ) + n = 1,3 , ( A n cosh n π y a cos n π y a + B n cosh n π x b cos n π y b + C n y sinh n π y a cos n π x a + D n x sinh n π x b cos n π y b ) + Δ ,
l = P P n d s ,
P 1 P 1 n d s = P 2 P 2 n d s
n d = 1.51680 · 1.00030 = 1.51726.
S = i = 1 N ( z i z ˜ i ) 2 ,
s = [ S / ( N 3 ) ] 1 / 2 .
p 1 ( x ) = ( 3 a 1 / 2 ) cos 3 ( a 1 x ) ,
a 1 = 0.49515541 / σ 1 .
P 1 ( x ) = x p 1 ( x ) d x = 1 / 4 sin a 1 x ( cos 2 a 1 x + 2 ) + 2 .
OPD = ( 1 + r 2 ) δ * + e 2 .
p r ( x ) = ( a 2 / 2 ) cos a 2 x ,
a 2 = π / 2 x 2 .
p 3 ( x ) = ( a 3 / 2 ) cos a 3 x ,
δ 1 = ( 1 + r 2 ) δ * + e 1 + e 2 , δ 2 = δ 1 + e 3 .

Metrics