Abstract

Wideband, low power electrooptic modulators of optical waveguide structure have been developed for infrared laser applications. They allow a reduction in driver power of two orders of magnitude below that of conventional devices. The modulators are composed of very thin layers of single-crystal GaAs, bounded on both sides by evaporated films of lower refractive index material: CdTe or As2S3. Minimum propagation loss, measured at 10.6 μm, was less than 1 dB/cm for TE modes and less than 5 dB/cm for TM modes. A 20-pF modulator exhibited a pulse response rise time of 3 nsec and showed useful frequency response to beyond 200 MHz. The basic capability for advanced design modulators of this type to operate at 10 μm with driver powers of less than 25 mW/MHz for 50% modulation depth is shown.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. P. Kaminow, E. H. Turner, Proc. IEEE 54, 1374 (1966).
    [CrossRef]
  2. J. E. Kiefer, T. A. Nussmeier, F. E. Goodwin, IEEE J. Quantum Electron. QE-8, 173 (1972), and references therein.
    [CrossRef]
  3. K. K. Chow, W. B. Leonard, IEEE J. Quantum Electron. QE-6, 789 (1970).
    [CrossRef]
  4. P. K. Tien, Appl. Opt. 10, 2395 (1971).
    [CrossRef] [PubMed]
  5. R. V. Pole, S. E. Miller, J. H. Harris, P. K. Tien, Appl. Opt. 11, 1675 (1972).
    [CrossRef] [PubMed]
  6. W. S. C. Chang, K. W. Loh, Appl. Opt. 10, 2361 (1971); Appl. Opt. 11, 1655 (1972).
    [CrossRef] [PubMed]
  7. J. H. McFee, J. D. McGee, T. Y. Chang, V. T. Nguyen, Appl. Phys. Lett. 21, 534 (1972).
    [CrossRef]
  8. G. Tangonan, A. C. Pastor, R. C. Pastor, Appl. Opt. 12, 1110 (1973).
    [CrossRef] [PubMed]
  9. D. B. Anderson, J. T. Boyd, Appl. Phys. Lett. 19, 266 (1971).
    [CrossRef]
  10. P. K. Cheo, J. M. Berak, W. Oshinsky, J. L. Swindal, Appl. Opt. 12, 500 (1973).
    [CrossRef] [PubMed]
  11. P. K. Cheo, Appl. Phys. Lett. 22, 241 (1973).
    [CrossRef]
  12. F. S. Chen, Proc. IEEE 58, 1440 (1970).
    [CrossRef]
  13. W. S. C. Chang, K. W. Loh, IEEE J. Quantum Electron. QE-8, 463 (1972).
    [CrossRef]
  14. S. Uehara, Y. Yamauchi, T. Izawa, Appl. Phys. Lett. 24, 19 (1974).
    [CrossRef]
  15. P. K. Tien, R. Ulrich, J. Opt. Soc. Am. 60, 1325 (1970).
    [CrossRef]
  16. A. Reisinger, Appl. Opt. 12, 1015 (1973).
    [CrossRef] [PubMed]
  17. T. Takano, J. Hamasaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
    [CrossRef]
  18. E. M. Garmire, H. Stoll, IEEE J. Quantum Electron. QE-8, 763 (1972).
    [CrossRef]
  19. Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, R. Hasumi, Appl. Phys. Lett. 21, 291 (1972).
    [CrossRef]
  20. I. P. Kaminow, E. H. Turner, in Handbook of Lasers, R. J. Pressley, Ed. (Chemical Rubber Co., Cleveland, 1971), Sec. 5.
  21. S. Namba, J. Opt. Soc. Am. 51, 76 (1961).
    [CrossRef]
  22. M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
    [CrossRef]
  23. See, for example, R. T. Denton, F. S. Chen, A. A. Ballman, J. Appl. Phys. 38, 1611 (1967).
    [CrossRef]
  24. S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, R. G. Hunsperger, Appl. Opt. 13, 327 (1974).
    [CrossRef] [PubMed]
  25. H. Furuta, H. Noda, A. Ihaya, Appl. Opt. 13, 322 (1974).
    [CrossRef] [PubMed]
  26. F. E. Goodwin, Hughes Research Laboratories, Malibu, California, private communication.

1974 (3)

1973 (4)

1972 (7)

T. Takano, J. Hamasaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
[CrossRef]

E. M. Garmire, H. Stoll, IEEE J. Quantum Electron. QE-8, 763 (1972).
[CrossRef]

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, R. Hasumi, Appl. Phys. Lett. 21, 291 (1972).
[CrossRef]

J. H. McFee, J. D. McGee, T. Y. Chang, V. T. Nguyen, Appl. Phys. Lett. 21, 534 (1972).
[CrossRef]

W. S. C. Chang, K. W. Loh, IEEE J. Quantum Electron. QE-8, 463 (1972).
[CrossRef]

R. V. Pole, S. E. Miller, J. H. Harris, P. K. Tien, Appl. Opt. 11, 1675 (1972).
[CrossRef] [PubMed]

J. E. Kiefer, T. A. Nussmeier, F. E. Goodwin, IEEE J. Quantum Electron. QE-8, 173 (1972), and references therein.
[CrossRef]

1971 (3)

1970 (4)

K. K. Chow, W. B. Leonard, IEEE J. Quantum Electron. QE-6, 789 (1970).
[CrossRef]

F. S. Chen, Proc. IEEE 58, 1440 (1970).
[CrossRef]

P. K. Tien, R. Ulrich, J. Opt. Soc. Am. 60, 1325 (1970).
[CrossRef]

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

1967 (1)

See, for example, R. T. Denton, F. S. Chen, A. A. Ballman, J. Appl. Phys. 38, 1611 (1967).
[CrossRef]

1966 (1)

I. P. Kaminow, E. H. Turner, Proc. IEEE 54, 1374 (1966).
[CrossRef]

1961 (1)

Anderson, D. B.

D. B. Anderson, J. T. Boyd, Appl. Phys. Lett. 19, 266 (1971).
[CrossRef]

Ballman, A. A.

See, for example, R. T. Denton, F. S. Chen, A. A. Ballman, J. Appl. Phys. 38, 1611 (1967).
[CrossRef]

Berak, J. M.

Boyd, J. T.

D. B. Anderson, J. T. Boyd, Appl. Phys. Lett. 19, 266 (1971).
[CrossRef]

Chang, T. Y.

J. H. McFee, J. D. McGee, T. Y. Chang, V. T. Nguyen, Appl. Phys. Lett. 21, 534 (1972).
[CrossRef]

Chang, W. S. C.

Chen, F. S.

F. S. Chen, Proc. IEEE 58, 1440 (1970).
[CrossRef]

See, for example, R. T. Denton, F. S. Chen, A. A. Ballman, J. Appl. Phys. 38, 1611 (1967).
[CrossRef]

Cheo, P. K.

Chiba, K.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, R. Hasumi, Appl. Phys. Lett. 21, 291 (1972).
[CrossRef]

Chow, K. K.

K. K. Chow, W. B. Leonard, IEEE J. Quantum Electron. QE-6, 789 (1970).
[CrossRef]

Dakss, M. L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

Denton, R. T.

See, for example, R. T. Denton, F. S. Chen, A. A. Ballman, J. Appl. Phys. 38, 1611 (1967).
[CrossRef]

Furuta, H.

Furuya, K.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, R. Hasumi, Appl. Phys. Lett. 21, 291 (1972).
[CrossRef]

Garmire, E.

Garmire, E. M.

E. M. Garmire, H. Stoll, IEEE J. Quantum Electron. QE-8, 763 (1972).
[CrossRef]

Garvin, H. L.

Goodwin, F. E.

J. E. Kiefer, T. A. Nussmeier, F. E. Goodwin, IEEE J. Quantum Electron. QE-8, 173 (1972), and references therein.
[CrossRef]

F. E. Goodwin, Hughes Research Laboratories, Malibu, California, private communication.

Hakuta, M.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, R. Hasumi, Appl. Phys. Lett. 21, 291 (1972).
[CrossRef]

Hamasaki, J.

T. Takano, J. Hamasaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
[CrossRef]

Harris, J. H.

Hasumi, R.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, R. Hasumi, Appl. Phys. Lett. 21, 291 (1972).
[CrossRef]

Heidrich, P. F.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

Hunsperger, R. G.

Ihaya, A.

Izawa, T.

S. Uehara, Y. Yamauchi, T. Izawa, Appl. Phys. Lett. 24, 19 (1974).
[CrossRef]

Kaminow, I. P.

I. P. Kaminow, E. H. Turner, Proc. IEEE 54, 1374 (1966).
[CrossRef]

I. P. Kaminow, E. H. Turner, in Handbook of Lasers, R. J. Pressley, Ed. (Chemical Rubber Co., Cleveland, 1971), Sec. 5.

Kiefer, J. E.

J. E. Kiefer, T. A. Nussmeier, F. E. Goodwin, IEEE J. Quantum Electron. QE-8, 173 (1972), and references therein.
[CrossRef]

Kuhn, L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

Leonard, W. B.

K. K. Chow, W. B. Leonard, IEEE J. Quantum Electron. QE-6, 789 (1970).
[CrossRef]

Loh, K. W.

McFee, J. H.

J. H. McFee, J. D. McGee, T. Y. Chang, V. T. Nguyen, Appl. Phys. Lett. 21, 534 (1972).
[CrossRef]

McGee, J. D.

J. H. McFee, J. D. McGee, T. Y. Chang, V. T. Nguyen, Appl. Phys. Lett. 21, 534 (1972).
[CrossRef]

Miller, S. E.

Namba, S.

Nguyen, V. T.

J. H. McFee, J. D. McGee, T. Y. Chang, V. T. Nguyen, Appl. Phys. Lett. 21, 534 (1972).
[CrossRef]

Noda, H.

Nussmeier, T. A.

J. E. Kiefer, T. A. Nussmeier, F. E. Goodwin, IEEE J. Quantum Electron. QE-8, 173 (1972), and references therein.
[CrossRef]

Oshinsky, W.

Pastor, A. C.

Pastor, R. C.

Pole, R. V.

Reisinger, A.

Scott, B. A.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

Somekh, S.

Stoll, H.

E. M. Garmire, H. Stoll, IEEE J. Quantum Electron. QE-8, 763 (1972).
[CrossRef]

Suematsu, Y.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, R. Hasumi, Appl. Phys. Lett. 21, 291 (1972).
[CrossRef]

Swindal, J. L.

Takano, T.

T. Takano, J. Hamasaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
[CrossRef]

Tangonan, G.

Tien, P. K.

Turner, E. H.

I. P. Kaminow, E. H. Turner, Proc. IEEE 54, 1374 (1966).
[CrossRef]

I. P. Kaminow, E. H. Turner, in Handbook of Lasers, R. J. Pressley, Ed. (Chemical Rubber Co., Cleveland, 1971), Sec. 5.

Uehara, S.

S. Uehara, Y. Yamauchi, T. Izawa, Appl. Phys. Lett. 24, 19 (1974).
[CrossRef]

Ulrich, R.

Yamauchi, Y.

S. Uehara, Y. Yamauchi, T. Izawa, Appl. Phys. Lett. 24, 19 (1974).
[CrossRef]

Yariv, A.

Appl. Opt. (8)

Appl. Phys. Lett. (6)

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, R. Hasumi, Appl. Phys. Lett. 21, 291 (1972).
[CrossRef]

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

S. Uehara, Y. Yamauchi, T. Izawa, Appl. Phys. Lett. 24, 19 (1974).
[CrossRef]

P. K. Cheo, Appl. Phys. Lett. 22, 241 (1973).
[CrossRef]

D. B. Anderson, J. T. Boyd, Appl. Phys. Lett. 19, 266 (1971).
[CrossRef]

J. H. McFee, J. D. McGee, T. Y. Chang, V. T. Nguyen, Appl. Phys. Lett. 21, 534 (1972).
[CrossRef]

IEEE J. Quantum Electron. (5)

J. E. Kiefer, T. A. Nussmeier, F. E. Goodwin, IEEE J. Quantum Electron. QE-8, 173 (1972), and references therein.
[CrossRef]

K. K. Chow, W. B. Leonard, IEEE J. Quantum Electron. QE-6, 789 (1970).
[CrossRef]

W. S. C. Chang, K. W. Loh, IEEE J. Quantum Electron. QE-8, 463 (1972).
[CrossRef]

T. Takano, J. Hamasaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
[CrossRef]

E. M. Garmire, H. Stoll, IEEE J. Quantum Electron. QE-8, 763 (1972).
[CrossRef]

J. Appl. Phys. (1)

See, for example, R. T. Denton, F. S. Chen, A. A. Ballman, J. Appl. Phys. 38, 1611 (1967).
[CrossRef]

J. Opt. Soc. Am. (2)

Proc. IEEE (2)

I. P. Kaminow, E. H. Turner, Proc. IEEE 54, 1374 (1966).
[CrossRef]

F. S. Chen, Proc. IEEE 58, 1440 (1970).
[CrossRef]

Other (2)

F. E. Goodwin, Hughes Research Laboratories, Malibu, California, private communication.

I. P. Kaminow, E. H. Turner, in Handbook of Lasers, R. J. Pressley, Ed. (Chemical Rubber Co., Cleveland, 1971), Sec. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Cross-sectional schematic of waveguide modulator structure.

Fig. 2
Fig. 2

(a) Single-crystal GaAs planar waveguide fabrication sequence. From left to right are shown the polished metal blocking plate, four platelets of GaAs coated with cladding film, and final lapped and polished platelets bonded to blocking plate. (b) Individual planar waveguide (left) and modulator samples. The central member contains a short top film and electrode, allowing space at each end for coupling prisms. The right-hand member contains several ion-machined phase gratings for beam coupling and propagation measurements.

Fig. 3
Fig. 3

Experimental setup for quantitative measurements of propagation, coupling, and loss characteristics.

Fig. 4
Fig. 4

Open-faced waveguide 1. (a) Prism-coupling angle θ3 vs mode number. (b) Guide index ng vs mode number.

Fig. 5
Fig. 5

Theoretical plot of GaAs film thickness b as a function of guide index ng for the first thirteen TE modes of open-faced guide bounded below by CdTe. Best-matching data points of sample 1 are shown corresponding to the TE data of Fig. 4(b).

Fig. 6
Fig. 6

Guide index vs mode number for modulator 6B (TM modes were omitted to avoid crowding). Corresponding mode spectra for open-faced waveguide 6B are shown in open circles and squares.

Fig. 7
Fig. 7

(a) Prism-coupling efficiencies for open-faced waveguide 1. (b) Total coupled power at 10.6 μm into waveguide 1.

Fig. 8
Fig. 8

(a) Transmission characteristics of waveguide 1. Propagation pathlength L = 0.437 cm. Minimum measurable attenuation coefficient is α = 2.2 dB/cm for TE mode 4. For TM mode 3, α = 7.4 dB/cm. (b) Transmission characteristics of modulator 1-1. Pathlength L = 0.473 cm. Minimum measurable α = 3.4 dB/cm for TE modes 3 and 4.

Fig. 9
Fig. 9

Transmission characteristics of modulator 6B. Pathlength L ≃ 0.490 cm. Minimum measurable α = 0.95 dB/cm for TE mode 3. For TM mode 6, α ~ 5 dB/cm.

Fig. 10
Fig. 10

Chopped output of grating-coupled modulator 1-2, illustrating ac intensity modulation.

Fig. 11
Fig. 11

Frequency response data for modulator 1-0. Solid curve is theoretical response; dashed curve represents corrected data for constant forward RF power through modulator.

Fig. 12
Fig. 12

Pulse response of modulator 1-0. Horizontal scale = 10 nsec/div.

Tables (2)

Tables Icon

Table I Structural Characteristics of Open-Faced Planar Waveguidesa

Tables Icon

Table II Test Modulator Dimensions and Capacitance

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

r i j = ( 0 2 3 r 1 3 r 0 2 3 r 1 3 r 0 0 2 1 3 r 0 1 3 r 0 1 3 r 0 0 2 3 r 0 0 ) ,
x = < 1 ¯ 1 0 > , y = < 1 ¯ 1 ¯ 2 > , z = < 1 1 1 > ,
Γ = ( π L / λ 0 ) n 0 3 3 r 41 E 3 ,
Γ = Γ b + Γ m sin ω m t ,
p t = 1 / 2 ( 1 + sin 2 θ cos Γ ) = 1 / 2 [ 1 + sin 2 θ cos ( Γ b + Γ m sin ω m t ) ] .
cos Γ = cos Γ b cos ( Γ m sin ω m t ) sin Γ b sin ( Γ m sin ω m t ) cos Γ b ( sin Γ b ) · Γ m sin ω m t ,
p t 1 / 2 [ 1 + sin 2 θ cos Γ b sin 2 θ ( sin Γ b ) · Γ m sin ω m t ] .
p t = 1 / 2 ( 1 ± Γ m sin ω m t ) .
Γ m = ( π L / λ 0 ) n 0 3 3 r 41 E m = ( π L / λ 0 ) n 0 3 3 r 41 ( V m / d ) ,
P = V m 2 / 2 Z 0 12 W .
p t = 1 / 2 [ 1 ± sin ( Γ m sin ω m t ) ] .
P ( π κ 0 λ 0 2 / 3 n 0 6 r 41 2 ) ( w d / L ) ( Γ m / π ) 2 B ,

Metrics