Abstract

In this paper we report the development of a holographic ruby laser with a fringe-free coherence length of over 1 m. The laser is electrooptically Q-switched for precise timing or for double-pulse operation. Oscillation is rigorously limited to a single axial mode with both a three-surface resonant reflector and a flowing-dye solution. Incorporation of the dye into the cavity decreases the energy output by ~50%, but forces the laser to produce reliable, fringe-free holograms while relaxing the requirements on the oscillator. The oscillator’s output of 12–15 mJ was increased to about 0.8 J with two 15-cm (6-in.) amplifier stages.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Hercher, Appl. Phys. Lett. 7, 39 (1965); R. M. Schotland, Appl. Opt. 9, 1211 (1970).
    [CrossRef] [PubMed]
  2. L. D. Siebert, Appl. Opt. 10, 632 (1971).
    [CrossRef] [PubMed]
  3. F. J. McClung, A. D. Jacobson, D. H. Close, Appl. Opt. 9, 103 (1970).
    [CrossRef] [PubMed]
  4. M. C. Foster, J. Opt. Soc. Am. 59, 1540A (1969).
  5. J. K. Watts, Appl. Opt. 7, 1621 (1968); H. F. Mahlein, G. Schollmeier, Appl. Opt. 8, 1197 (1969).
    [CrossRef] [PubMed]
  6. See also W. Wiesemann, Appl. Opt. 12, 2909 (1973), which appeared after the completion of this paper.
    [CrossRef] [PubMed]
  7. See R. J. Collier et al., Optical Holography (Academic Press, New York, 1971), pp. 316–319, for a somewhat detailed discussion of coherence length.

1973 (1)

1971 (1)

1970 (1)

1969 (1)

M. C. Foster, J. Opt. Soc. Am. 59, 1540A (1969).

1968 (1)

1965 (1)

M. Hercher, Appl. Phys. Lett. 7, 39 (1965); R. M. Schotland, Appl. Opt. 9, 1211 (1970).
[CrossRef] [PubMed]

Close, D. H.

Collier, R. J.

See R. J. Collier et al., Optical Holography (Academic Press, New York, 1971), pp. 316–319, for a somewhat detailed discussion of coherence length.

Foster, M. C.

M. C. Foster, J. Opt. Soc. Am. 59, 1540A (1969).

Hercher, M.

M. Hercher, Appl. Phys. Lett. 7, 39 (1965); R. M. Schotland, Appl. Opt. 9, 1211 (1970).
[CrossRef] [PubMed]

Jacobson, A. D.

McClung, F. J.

Siebert, L. D.

Watts, J. K.

Wiesemann, W.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

M. Hercher, Appl. Phys. Lett. 7, 39 (1965); R. M. Schotland, Appl. Opt. 9, 1211 (1970).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

M. C. Foster, J. Opt. Soc. Am. 59, 1540A (1969).

Other (1)

See R. J. Collier et al., Optical Holography (Academic Press, New York, 1971), pp. 316–319, for a somewhat detailed discussion of coherence length.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Three-surface resonant reflector showing the incident wave and the three important reflected waves.

Fig. 2
Fig. 2

Over-all reflectivity RT of the resonant reflector vs deviation of wavelength from peak. Total optical thickness of etalon is six times that of uncoated flat. Pattern repeats itself every 5 × 10−2 nm when uncoated flat is about 3 mm thick.

Fig. 3
Fig. 3

Photograph of typical hologram showing depth of field ≳ 1 m. White background is provided to check for fringes. Inset: Typical laser pulse, 20 nsec/div.

Tables (1)

Tables Icon

Table I Output Properties of Holographic Laser

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r t = r { 1 + t 2 exp ( i δ 1 ) + t 4 exp [ i ( δ 1 + δ 2 ) ] } ,
R t = R [ 1 + 2 T cos δ 1 + T 2 ( 1 + 2 cos δ 3 ) + 2 T 3 cos δ 2 + T 4 ] .

Metrics