Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Gundlach, C. J. Claus, Photogr. Sci. Eng. 7, 14 (1963); P. J. Cressman, J. Appl. Phys. 34, 2327 (1963); N. E. Wolff, RCA Review 25, 200 (1964); H. F. Budd, J. Appl. Phys. 36, 613 (1965).
    [CrossRef]
  2. H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959), p. 101; T. C. Lee, Appl. Opt. 13, 888 (1974).
    [CrossRef] [PubMed]
  3. E. H. Cornish, Plastics 28, 61 (March1963).
  4. Y. S. Touloukina, Ed., Thermophysical Properties of High Temperature Solid Materials (Macmillan, New York, 1967), Vol. 6, p. 972.
  5. N. F. D’Antonio, Appl. Opt. Suppl. 3 Electrophotography, 142 (1969); H. Veron, C. C. Wang, J. Appl. Phys. 43, 2664 (1972) and the references contained therein.
    [CrossRef]

1969 (1)

N. F. D’Antonio, Appl. Opt. Suppl. 3 Electrophotography, 142 (1969); H. Veron, C. C. Wang, J. Appl. Phys. 43, 2664 (1972) and the references contained therein.
[CrossRef]

1963 (2)

R. W. Gundlach, C. J. Claus, Photogr. Sci. Eng. 7, 14 (1963); P. J. Cressman, J. Appl. Phys. 34, 2327 (1963); N. E. Wolff, RCA Review 25, 200 (1964); H. F. Budd, J. Appl. Phys. 36, 613 (1965).
[CrossRef]

E. H. Cornish, Plastics 28, 61 (March1963).

Carslaw, H. S.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959), p. 101; T. C. Lee, Appl. Opt. 13, 888 (1974).
[CrossRef] [PubMed]

Claus, C. J.

R. W. Gundlach, C. J. Claus, Photogr. Sci. Eng. 7, 14 (1963); P. J. Cressman, J. Appl. Phys. 34, 2327 (1963); N. E. Wolff, RCA Review 25, 200 (1964); H. F. Budd, J. Appl. Phys. 36, 613 (1965).
[CrossRef]

Cornish, E. H.

E. H. Cornish, Plastics 28, 61 (March1963).

D’Antonio, N. F.

N. F. D’Antonio, Appl. Opt. Suppl. 3 Electrophotography, 142 (1969); H. Veron, C. C. Wang, J. Appl. Phys. 43, 2664 (1972) and the references contained therein.
[CrossRef]

Gundlach, R. W.

R. W. Gundlach, C. J. Claus, Photogr. Sci. Eng. 7, 14 (1963); P. J. Cressman, J. Appl. Phys. 34, 2327 (1963); N. E. Wolff, RCA Review 25, 200 (1964); H. F. Budd, J. Appl. Phys. 36, 613 (1965).
[CrossRef]

Jaeger, J. C.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959), p. 101; T. C. Lee, Appl. Opt. 13, 888 (1974).
[CrossRef] [PubMed]

Appl. Opt. Suppl. 3 Electrophotography (1)

N. F. D’Antonio, Appl. Opt. Suppl. 3 Electrophotography, 142 (1969); H. Veron, C. C. Wang, J. Appl. Phys. 43, 2664 (1972) and the references contained therein.
[CrossRef]

Photogr. Sci. Eng. (1)

R. W. Gundlach, C. J. Claus, Photogr. Sci. Eng. 7, 14 (1963); P. J. Cressman, J. Appl. Phys. 34, 2327 (1963); N. E. Wolff, RCA Review 25, 200 (1964); H. F. Budd, J. Appl. Phys. 36, 613 (1965).
[CrossRef]

Plastics (1)

E. H. Cornish, Plastics 28, 61 (March1963).

Other (2)

Y. S. Touloukina, Ed., Thermophysical Properties of High Temperature Solid Materials (Macmillan, New York, 1967), Vol. 6, p. 972.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959), p. 101; T. C. Lee, Appl. Opt. 13, 888 (1974).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement. Heat current pulse is supplied to transparent conductor and observed on oscilloscope. Development and erasure of frost are monitored by a photodiode located away from the specular reflection angle.

Fig. 2
Fig. 2

Typical oscilloscope traces showing applied heat current pulse (square pulse) and photodetector response (rounded pulse). The lesser current pulse is the development heat pulse; the greater is the erasure pulse. The descending photodetector curve represents the development of frost; the ascending curve represents the erasure of the frost. Horizontal scale is 50 μsec/div. (a) is for the experimental sample of Fig. 1; (b) is for a similar sample without the photoconductor layer, i.e., with the thermoplastic coated directly over the conductive layer. Slight hump in the erasure curve indicates that prior development was just below the optimum level yielding a conservative (longer) estimate of development time.

Fig. 3
Fig. 3

Dependence of response time of thermoplastic on heating pulse duration. Note that delay of frost onset is significantly reduced by elimination of the photoconductor layer. Note also that erasure is as prompt as frost development.

Fig. 4
Fig. 4

Heat pulse energy required for optimum development as a function of heat pulse duration for a thermoplastic having softening temperature between 70°C and 80°C. Heat requirements decrease with pulse length as less and less energy is lost to substrate. In the absence of the photoconductor layer, even less energy is required.

Metrics