Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Perry, Appl. Opt. 4, 987 (1965).
    [Crossref]
  2. P. H. Berning, in Physics of Thin Films, G. Hass, Ed. (Academic Press, New York, 1963), vol. 1, p. 69.
  3. M. Schiekel, K. Fahrenschon, Appl. Phys. Lett. 19, 391 (1971).
    [Crossref]
  4. F. J. Kahn, Appl. Phys. Lett. 20, 119 (1972).
    [Crossref]

1972 (1)

F. J. Kahn, Appl. Phys. Lett. 20, 119 (1972).
[Crossref]

1971 (1)

M. Schiekel, K. Fahrenschon, Appl. Phys. Lett. 19, 391 (1971).
[Crossref]

1965 (1)

Berning, P. H.

P. H. Berning, in Physics of Thin Films, G. Hass, Ed. (Academic Press, New York, 1963), vol. 1, p. 69.

Fahrenschon, K.

M. Schiekel, K. Fahrenschon, Appl. Phys. Lett. 19, 391 (1971).
[Crossref]

Kahn, F. J.

F. J. Kahn, Appl. Phys. Lett. 20, 119 (1972).
[Crossref]

Perry, D. L.

Schiekel, M.

M. Schiekel, K. Fahrenschon, Appl. Phys. Lett. 19, 391 (1971).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Schiekel, K. Fahrenschon, Appl. Phys. Lett. 19, 391 (1971).
[Crossref]

F. J. Kahn, Appl. Phys. Lett. 20, 119 (1972).
[Crossref]

Other (1)

P. H. Berning, in Physics of Thin Films, G. Hass, Ed. (Academic Press, New York, 1963), vol. 1, p. 69.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Apparatus for measurement of the reflectance and transmittance.

Fig. 2
Fig. 2

Reflectance and transmittance of the cell for normal incident light beam with wavelength 6328 Å as a function of applied ac voltage. For (a) reflectance is R; (b) transmittance is T; and (c) R + T.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R = ( f 1 2 cos 2 { [ ( 2 π ) / λ ] n d } + f 2 2 sin 2 { [ ( 2 π ) / λ ] n d } ) / ( g 1 2 cos 2 { [ ( 2 π ) / λ ] n d } + g 2 2 sin 2 { [ ( 2 π ) / λ ] n d } ) ,
f 1 = n 0 ( n 2 / n 1 ) A B n s ( n 1 / n 2 ) A B , f 2 = ( n n 0 n s / n 1 2 ) ( n 2 / n 1 ) A + B ( n 1 2 / n ) ( n 1 / n 2 ) A + B , g 1 = n 0 ( n 2 / n 1 ) A B + n s ( n 1 / n 2 ) A B , g 2 = ( n n 0 n s / n 1 2 ) ( n 2 / n 1 ) A + B + ( n 1 2 / n ) ( n 1 / n 2 ) A + B ,
R max = ( f 2 / g 2 ) 2 ;
R min = ( f 1 / g 1 ) 2 .
R min = [ ( n 0 n s ) / ( n 0 + n s ) ] 2 ,
T = 1 R .

Metrics