Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Fried, Appl. Opt. 13, 1282(1974).
    [CrossRef] [PubMed]
  2. E. V. Hoversten, D. L. Snyder, R. O. Harger, K. Kurimoto, IEEE Trans. Comm. COM-22, 17(1974).
    [CrossRef]
  3. E. Parzen, Stochastic Processes (Holden-Day, San Francisco, 1962), Chap. 4.
  4. H. L. Van Trees, Detection, Estimation and Modulation Theory, Part 1 (Wiley, New York, 1968), p. 289.

1974

D. L. Fried, Appl. Opt. 13, 1282(1974).
[CrossRef] [PubMed]

E. V. Hoversten, D. L. Snyder, R. O. Harger, K. Kurimoto, IEEE Trans. Comm. COM-22, 17(1974).
[CrossRef]

Fried, D. L.

Harger, R. O.

E. V. Hoversten, D. L. Snyder, R. O. Harger, K. Kurimoto, IEEE Trans. Comm. COM-22, 17(1974).
[CrossRef]

Hoversten, E. V.

E. V. Hoversten, D. L. Snyder, R. O. Harger, K. Kurimoto, IEEE Trans. Comm. COM-22, 17(1974).
[CrossRef]

Kurimoto, K.

E. V. Hoversten, D. L. Snyder, R. O. Harger, K. Kurimoto, IEEE Trans. Comm. COM-22, 17(1974).
[CrossRef]

Parzen, E.

E. Parzen, Stochastic Processes (Holden-Day, San Francisco, 1962), Chap. 4.

Snyder, D. L.

E. V. Hoversten, D. L. Snyder, R. O. Harger, K. Kurimoto, IEEE Trans. Comm. COM-22, 17(1974).
[CrossRef]

Van Trees, H. L.

H. L. Van Trees, Detection, Estimation and Modulation Theory, Part 1 (Wiley, New York, 1968), p. 289.

Appl. Opt.

IEEE Trans. Comm.

E. V. Hoversten, D. L. Snyder, R. O. Harger, K. Kurimoto, IEEE Trans. Comm. COM-22, 17(1974).
[CrossRef]

Other

E. Parzen, Stochastic Processes (Holden-Day, San Francisco, 1962), Chap. 4.

H. L. Van Trees, Detection, Estimation and Modulation Theory, Part 1 (Wiley, New York, 1968), p. 289.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (9)

Equations on this page are rendered with MathJax. Learn more.

r ( t ) = n = 1 N ( t ) h ( t t n ) , 0 t ,
r ( t ) = s ( t ) h ( t t ) d t ,
[ r ( t ) r ( t ) ] [ r ( t + τ ) r ( t + τ ) ] = s ( t ) h ( t t ) h ( t + τ t ) d t ,
r ( t ) = s ( t ) h ( t ) d t ,
[ r ( t ) r ( t ) ] [ r ( t + τ ) r ( t + τ ) ] = s ( t ) h ( t ) h ( t + τ ) d t .
[ r ( t ) ] 1 / k [ s ( t ) ] 1 / k + n ( t ) / { k [ s ( t ) ] 1 1 / k } ,
s ( t ) = { s 0 0 t T message 0 s 1 0 t T message 1
0 T r ( t ) d t
0 T [ r ( t ) ] 1 / k d t

Metrics