Abstract

Methods which have proved to be useful for measuring core–cladding refractive-index differences, for approximating refractive-index profiles, and for viewing various inhomogeneities in solid multimode optical fibers are described. Optical, transmission-interference,and scanning-electron-beam microscopy have been used, and the illustrations include examples of photomicrographs made by each of these techniques.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Miller, E. A. J. Marcatili, T. Li, Proc. IEEE, 61, 1703 (1973).
    [CrossRef]
  2. C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, D. B. Keck, Proc. IEEE, 61, 1498 (1973).
    [CrossRef]
  3. H. M. Presby, W. L. Brown, Appl. Phys. Lett. 24, 511 (1974).
    [CrossRef]
  4. A. H. Cherin, L. G. Cohen, W. S. Holden, C. A. Burrus, P. Kaiser, Appl. Opt. 13, 2359, (1974).
    [CrossRef] [PubMed]
  5. J. Stone, C. A. Burrus, Appl. Opt. 13, 1256 (1974).
    [CrossRef] [PubMed]
  6. R. D. Maurer, “Method of Forming an Economic Optical Waveguide Fiber,” U.S. Patent3,737,293 (5June1973).
  7. L. Holland, Properties of Glass Surfaces (Chapman and Hall, London, 1966).
  8. J. Stone, C. A. Burrus, Appl. Phys. Lett. 23, 388 (1973).
    [CrossRef]
  9. M. J. Rand, R. D. Standley, Appl. Opt. 11, 2482 (1972).
    [CrossRef] [PubMed]

1974 (3)

1973 (3)

J. Stone, C. A. Burrus, Appl. Phys. Lett. 23, 388 (1973).
[CrossRef]

S. E. Miller, E. A. J. Marcatili, T. Li, Proc. IEEE, 61, 1703 (1973).
[CrossRef]

C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, D. B. Keck, Proc. IEEE, 61, 1498 (1973).
[CrossRef]

1972 (1)

Brown, W. L.

H. M. Presby, W. L. Brown, Appl. Phys. Lett. 24, 511 (1974).
[CrossRef]

Burrus, C. A.

A. H. Cherin, L. G. Cohen, W. S. Holden, C. A. Burrus, P. Kaiser, Appl. Opt. 13, 2359, (1974).
[CrossRef] [PubMed]

J. Stone, C. A. Burrus, Appl. Opt. 13, 1256 (1974).
[CrossRef] [PubMed]

J. Stone, C. A. Burrus, Appl. Phys. Lett. 23, 388 (1973).
[CrossRef]

C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, D. B. Keck, Proc. IEEE, 61, 1498 (1973).
[CrossRef]

Cherin, A. H.

Chinnock, E. L.

C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, D. B. Keck, Proc. IEEE, 61, 1498 (1973).
[CrossRef]

Cohen, L. G.

Gloge, D.

C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, D. B. Keck, Proc. IEEE, 61, 1498 (1973).
[CrossRef]

Holden, W. S.

A. H. Cherin, L. G. Cohen, W. S. Holden, C. A. Burrus, P. Kaiser, Appl. Opt. 13, 2359, (1974).
[CrossRef] [PubMed]

C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, D. B. Keck, Proc. IEEE, 61, 1498 (1973).
[CrossRef]

Holland, L.

L. Holland, Properties of Glass Surfaces (Chapman and Hall, London, 1966).

Kaiser, P.

Keck, D. B.

C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, D. B. Keck, Proc. IEEE, 61, 1498 (1973).
[CrossRef]

Li, T.

C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, D. B. Keck, Proc. IEEE, 61, 1498 (1973).
[CrossRef]

S. E. Miller, E. A. J. Marcatili, T. Li, Proc. IEEE, 61, 1703 (1973).
[CrossRef]

Marcatili, E. A. J.

S. E. Miller, E. A. J. Marcatili, T. Li, Proc. IEEE, 61, 1703 (1973).
[CrossRef]

Maurer, R. D.

R. D. Maurer, “Method of Forming an Economic Optical Waveguide Fiber,” U.S. Patent3,737,293 (5June1973).

Miller, S. E.

S. E. Miller, E. A. J. Marcatili, T. Li, Proc. IEEE, 61, 1703 (1973).
[CrossRef]

Presby, H. M.

H. M. Presby, W. L. Brown, Appl. Phys. Lett. 24, 511 (1974).
[CrossRef]

Rand, M. J.

Standley, R. D.

C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, D. B. Keck, Proc. IEEE, 61, 1498 (1973).
[CrossRef]

M. J. Rand, R. D. Standley, Appl. Opt. 11, 2482 (1972).
[CrossRef] [PubMed]

Stone, J.

J. Stone, C. A. Burrus, Appl. Opt. 13, 1256 (1974).
[CrossRef] [PubMed]

J. Stone, C. A. Burrus, Appl. Phys. Lett. 23, 388 (1973).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

J. Stone, C. A. Burrus, Appl. Phys. Lett. 23, 388 (1973).
[CrossRef]

H. M. Presby, W. L. Brown, Appl. Phys. Lett. 24, 511 (1974).
[CrossRef]

Proc. IEEE (2)

S. E. Miller, E. A. J. Marcatili, T. Li, Proc. IEEE, 61, 1703 (1973).
[CrossRef]

C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, D. B. Keck, Proc. IEEE, 61, 1498 (1973).
[CrossRef]

Other (2)

R. D. Maurer, “Method of Forming an Economic Optical Waveguide Fiber,” U.S. Patent3,737,293 (5June1973).

L. Holland, Properties of Glass Surfaces (Chapman and Hall, London, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Fiber about 0.5 mm long viewed (a) with transmitted light in an optical microscope, (b) in a parallel-fringe field of the interference microscope, (c) in flat-field of the interference microscope, (d) in a scanning electron microscope after surface etching. The structure shown in (e) was inferred from the photomicrographs.

Fig. 2
Fig. 2

Interferographs of a 0.15-mm length of fiber with polished ends (a) and (b), and an SEM photomicrograph of an etched end of this fiber. Maximum Δn ≃ 0.027, core diam ≃ 105 μm.

Fig. 3
Fig. 3

Fiber 0.565 mm long with polished ends in optical microscope (a) illuminated with approximately parallel light and (b) with diverging light; (c) sample with one etched surface viewed as (b); (d) interferogram of sample before etching. Core diam ≃ 100 μm, maximum Δn ≃ 0.0048.

Fig. 4
Fig. 4

Scanning-electron-beam microscope photomicrographs of the fiber of Fig. 3; (a) etched end, (b) etched longitudinal section. Areas with maximum Δn show as peaks. Diameter of well approximately 100 μm.

Fig. 5
Fig. 5

Interferogram of preform (a) from which etched fiber shown in a SEM photomicrograph (b) was pulled. The fiber core was fused from several deposited layers, and the ring of disturbances is interpreted to be foreign matter introduced during one of the deposits. Diameter of the depression is about 28 μm.

Metrics