Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Moran, I. P. Kaminow, Appl. Opt. 12, 1964 (1973).
    [CrossRef] [PubMed]
  2. F. S. Harris, G. C. Sherman, B. H. Billings, Appl. Opt. 5, 665 (1966).
    [CrossRef] [PubMed]
  3. M. R. B. Forshaw, Opt. Commun. 8, 201 (1973).
    [CrossRef]
  4. B. Batterman, H. Cole, Rev. Mod. Phys. 36, 681 (1964).
    [CrossRef]
  5. R. W. James, The Optical Principles of the Diffraction of X-rays (Bell and Sons, London, 1967), p. 413.

1973 (2)

1966 (1)

1964 (1)

B. Batterman, H. Cole, Rev. Mod. Phys. 36, 681 (1964).
[CrossRef]

Batterman, B.

B. Batterman, H. Cole, Rev. Mod. Phys. 36, 681 (1964).
[CrossRef]

Billings, B. H.

Cole, H.

B. Batterman, H. Cole, Rev. Mod. Phys. 36, 681 (1964).
[CrossRef]

Forshaw, M. R. B.

M. R. B. Forshaw, Opt. Commun. 8, 201 (1973).
[CrossRef]

Harris, F. S.

James, R. W.

R. W. James, The Optical Principles of the Diffraction of X-rays (Bell and Sons, London, 1967), p. 413.

Kaminow, I. P.

Moran, J. M.

Sherman, G. C.

Appl. Opt. (2)

Opt. Commun. (1)

M. R. B. Forshaw, Opt. Commun. 8, 201 (1973).
[CrossRef]

Rev. Mod. Phys. (1)

B. Batterman, H. Cole, Rev. Mod. Phys. 36, 681 (1964).
[CrossRef]

Other (1)

R. W. James, The Optical Principles of the Diffraction of X-rays (Bell and Sons, London, 1967), p. 413.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Far-field diffraction pattern of an overexposed thick holographic diffraction grating. Zero-order beam to right, first-order image to left. Angle between recording beams = 17.6°. Hologram thickness = 1.36 mm. Rotation about vertical and horizontal axes by 0.8° and 3.5°, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S i = S m - S R + S C ( primary image ) ,
S i = S R - S m + S C ( conjugate image ) .
tan ( β 0 / 2 ) = [ ( λ + λ 0 ) / ( λ - λ 0 ) ] tan ( α / 2 ) ,
tan ( β 1 / 2 ) = [ ( λ - λ 0 ) / ( λ + λ 0 ) ] tan ( α / 2 ) .

Metrics