Abstract

A general expression for the optical heterodyne signal power from a finite-sized radiation source is derived that is formally valid for an arbitrary degree of coherence of the source. The signal power is given explicitly in terms of those variables that describe the source of radiation (e.g., total radiated power, brightness distribution, and source size). Finite-sized incoherent and coherent sources are examined in detail, and analytic expressions are derived for various geometries of experimental interest. For a finite-sized incoherent source, we derive a generalization of Siegman’s results for an extended incoherent source, which states that the effective or capture area of the receiver integrated over its field of view is equal to the square of the optical wavelength. In addition, we derive an analytic expression for the heterodyne signal power for a coherent Gaussian laser source and a Gaussian local oscillator. In contrast to the case of an incoherent source, in which the heterodyne signal power increases in proportion to receiver area, the heterodyne signal power from a coherent source tends asymptotically to a constant with increasing receiver area. This implies that, in a shot-noise-limited system, the SNR tends to a constant or decreases inversely as the receiver area for incoherent or coherent sources, respectively.

© 1974 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mutual Coherence Function of a Finite Optical Beam and Application to Coherent Detection

R. F. Lutomirski and R. G. Buser
Appl. Opt. 12(9) 2153-2160 (1973)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (62)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription