Abstract

Recording of relief phase holograms in Shipley AZ-1350 positive photoresist is investigated in this report. It is found that the use of Shipley AZ-303 developer with Shipley AZ-1350 photoresist relieves the material nonlinearity usually associated with photoresists, thereby allowing higher image readout efficiencies. The use of Shipley AZ-303 developer also provides an increase in material sensitivity. A theoretical model for positive photoresist exposure characteristics is developed and verified by empirical results. Using Shipley AZ-303 developer, a design procedure for recording useful (i.e., acceptable SNR > 25 dB, high efficiency ~3–5%, exposure sensitivity ~ a few mJ·cm−2) relief phase holograms in Shipley AZ-1350 positive photoresist is synthesized.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, Proc. Roy. Soc. (London) A197, 454 (1949).
  2. E. N. Leith, J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1962).
    [CrossRef]
  3. R. A. Bartolini, W. J. Hannan, D. Karlsons, M. J. Lurie, Appl Opt. 9, 2283 (1970).
    [CrossRef] [PubMed]
  4. R. A. Bartolini, N. Feldstein, R. J. Ryan, J. Electrochem. Soc. 120, 1408 (1973).
    [CrossRef]
  5. H. Gerritsen, W. J. Hannan, E. Ramberg, Appl. Opt. 7, 2301 (1968).
    [CrossRef] [PubMed]
  6. A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. J. Lurie, RCA Rev. 33, 131 (1972).
  7. J. B. DeVelis, G. B. Parrent, B. Thompson, J. Opt. Soc. Am. 56, 423 (1966).
    [CrossRef]
  8. R. A. Bartolini, J. Bordogna, D. Karlsons, RCA Rev. 33, 170 (1972).
  9. J. C. Urbach, R. W. Meier, Appl. Opt. 8, 2269 (1969).
    [CrossRef] [PubMed]
  10. H. Kogelnik, Microwaves 6, 68 (1967).
  11. L. H. Lin, J. Opt. Soc. Am. 61, 203 (1971).
    [CrossRef]
  12. H. Dammann, J. Opt. Soc. Am. 60, 1635 (1970).
    [CrossRef]
  13. W. T. Cathey, J. Opt. Soc. Am. 56, 1167 (1966).
    [CrossRef]
  14. W. H. Lee, M. O. Greer, J. Opt. Soc. Am. 61, 402 (1971).
    [CrossRef]
  15. J. A. Jenney, Appl. Opt. 11, 1371 (1972).
    [CrossRef] [PubMed]
  16. K. R. Dunham, Solid State Tech. 14, 41 (1971).
    [CrossRef]
  17. M. J. Beesley, J. G. Castledine, Appl. Opt. 9, 2720 (1970).
    [CrossRef] [PubMed]
  18. L. J. Fried, R. Flachbart, D. E. Itlen, J. W. Raiseski, F. W. Anderson, K. V. Patel, J. Electrochem. Soc. 117, 1079 (1970).
    [CrossRef]
  19. C. B. Neblette, Photography: Its Materials and Processes (Van Nostrand, New York, 1962).
  20. V. Balzani, V. Carassiti, Photochemistry of Coordination Compounds (Academic, New York, 1970).
  21. B. Broyde, J. Electrochem. Soc. 117, 1555 (1970).
    [CrossRef]
  22. R. A. Bartolini, Appl. Opt. 11, 1275 (1972).
    [CrossRef] [PubMed]
  23. W. L. Bond, F. M. Smits, Bell Syst. Tech. J. 35, 1209 (1956).
  24. M. S. Htoo, Photogr. Sci. Eng. 12, 169 (1968).
  25. F. J. Loprest, E. A. Fitzgerald, Photogr. Sci. Eng. 15, 260 (1971).
  26. Z. L. Budrikis, Proc. IEEE 60, 1635 (1970).
  27. C. S. Vikram, R. S. Siroki, Appl. Opt. 10, 2790 (1971).
    [CrossRef] [PubMed]

1973 (1)

R. A. Bartolini, N. Feldstein, R. J. Ryan, J. Electrochem. Soc. 120, 1408 (1973).
[CrossRef]

1972 (4)

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. J. Lurie, RCA Rev. 33, 131 (1972).

R. A. Bartolini, J. Bordogna, D. Karlsons, RCA Rev. 33, 170 (1972).

R. A. Bartolini, Appl. Opt. 11, 1275 (1972).
[CrossRef] [PubMed]

J. A. Jenney, Appl. Opt. 11, 1371 (1972).
[CrossRef] [PubMed]

1971 (5)

1970 (6)

M. J. Beesley, J. G. Castledine, Appl. Opt. 9, 2720 (1970).
[CrossRef] [PubMed]

H. Dammann, J. Opt. Soc. Am. 60, 1635 (1970).
[CrossRef]

R. A. Bartolini, W. J. Hannan, D. Karlsons, M. J. Lurie, Appl Opt. 9, 2283 (1970).
[CrossRef] [PubMed]

Z. L. Budrikis, Proc. IEEE 60, 1635 (1970).

L. J. Fried, R. Flachbart, D. E. Itlen, J. W. Raiseski, F. W. Anderson, K. V. Patel, J. Electrochem. Soc. 117, 1079 (1970).
[CrossRef]

B. Broyde, J. Electrochem. Soc. 117, 1555 (1970).
[CrossRef]

1969 (1)

1968 (2)

1967 (1)

H. Kogelnik, Microwaves 6, 68 (1967).

1966 (2)

1962 (1)

1956 (1)

W. L. Bond, F. M. Smits, Bell Syst. Tech. J. 35, 1209 (1956).

1949 (1)

D. Gabor, Proc. Roy. Soc. (London) A197, 454 (1949).

Anderson, F. W.

L. J. Fried, R. Flachbart, D. E. Itlen, J. W. Raiseski, F. W. Anderson, K. V. Patel, J. Electrochem. Soc. 117, 1079 (1970).
[CrossRef]

Balzani, V.

V. Balzani, V. Carassiti, Photochemistry of Coordination Compounds (Academic, New York, 1970).

Bartolini, R. A.

R. A. Bartolini, N. Feldstein, R. J. Ryan, J. Electrochem. Soc. 120, 1408 (1973).
[CrossRef]

R. A. Bartolini, J. Bordogna, D. Karlsons, RCA Rev. 33, 170 (1972).

R. A. Bartolini, Appl. Opt. 11, 1275 (1972).
[CrossRef] [PubMed]

R. A. Bartolini, W. J. Hannan, D. Karlsons, M. J. Lurie, Appl Opt. 9, 2283 (1970).
[CrossRef] [PubMed]

Beesley, M. J.

Bond, W. L.

W. L. Bond, F. M. Smits, Bell Syst. Tech. J. 35, 1209 (1956).

Bordogna, J.

R. A. Bartolini, J. Bordogna, D. Karlsons, RCA Rev. 33, 170 (1972).

Broyde, B.

B. Broyde, J. Electrochem. Soc. 117, 1555 (1970).
[CrossRef]

Budrikis, Z. L.

Z. L. Budrikis, Proc. IEEE 60, 1635 (1970).

Carassiti, V.

V. Balzani, V. Carassiti, Photochemistry of Coordination Compounds (Academic, New York, 1970).

Castledine, J. G.

Cathey, W. T.

Dammann, H.

DeVelis, J. B.

Dunham, K. R.

K. R. Dunham, Solid State Tech. 14, 41 (1971).
[CrossRef]

Feldstein, N.

R. A. Bartolini, N. Feldstein, R. J. Ryan, J. Electrochem. Soc. 120, 1408 (1973).
[CrossRef]

Firester, A. H.

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. J. Lurie, RCA Rev. 33, 131 (1972).

Fitzgerald, E. A.

F. J. Loprest, E. A. Fitzgerald, Photogr. Sci. Eng. 15, 260 (1971).

Flachbart, R.

L. J. Fried, R. Flachbart, D. E. Itlen, J. W. Raiseski, F. W. Anderson, K. V. Patel, J. Electrochem. Soc. 117, 1079 (1970).
[CrossRef]

Fox, E. C.

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. J. Lurie, RCA Rev. 33, 131 (1972).

Fried, L. J.

L. J. Fried, R. Flachbart, D. E. Itlen, J. W. Raiseski, F. W. Anderson, K. V. Patel, J. Electrochem. Soc. 117, 1079 (1970).
[CrossRef]

Gabor, D.

D. Gabor, Proc. Roy. Soc. (London) A197, 454 (1949).

Gayeski, T.

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. J. Lurie, RCA Rev. 33, 131 (1972).

Gerritsen, H.

Greer, M. O.

Hannan, W. J.

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. J. Lurie, RCA Rev. 33, 131 (1972).

R. A. Bartolini, W. J. Hannan, D. Karlsons, M. J. Lurie, Appl Opt. 9, 2283 (1970).
[CrossRef] [PubMed]

H. Gerritsen, W. J. Hannan, E. Ramberg, Appl. Opt. 7, 2301 (1968).
[CrossRef] [PubMed]

Htoo, M. S.

M. S. Htoo, Photogr. Sci. Eng. 12, 169 (1968).

Itlen, D. E.

L. J. Fried, R. Flachbart, D. E. Itlen, J. W. Raiseski, F. W. Anderson, K. V. Patel, J. Electrochem. Soc. 117, 1079 (1970).
[CrossRef]

Jenney, J. A.

Karlsons, D.

R. A. Bartolini, J. Bordogna, D. Karlsons, RCA Rev. 33, 170 (1972).

R. A. Bartolini, W. J. Hannan, D. Karlsons, M. J. Lurie, Appl Opt. 9, 2283 (1970).
[CrossRef] [PubMed]

Kogelnik, H.

H. Kogelnik, Microwaves 6, 68 (1967).

Lee, W. H.

Leith, E. N.

Lin, L. H.

Loprest, F. J.

F. J. Loprest, E. A. Fitzgerald, Photogr. Sci. Eng. 15, 260 (1971).

Lurie, M. J.

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. J. Lurie, RCA Rev. 33, 131 (1972).

R. A. Bartolini, W. J. Hannan, D. Karlsons, M. J. Lurie, Appl Opt. 9, 2283 (1970).
[CrossRef] [PubMed]

Meier, R. W.

Neblette, C. B.

C. B. Neblette, Photography: Its Materials and Processes (Van Nostrand, New York, 1962).

Parrent, G. B.

Patel, K. V.

L. J. Fried, R. Flachbart, D. E. Itlen, J. W. Raiseski, F. W. Anderson, K. V. Patel, J. Electrochem. Soc. 117, 1079 (1970).
[CrossRef]

Raiseski, J. W.

L. J. Fried, R. Flachbart, D. E. Itlen, J. W. Raiseski, F. W. Anderson, K. V. Patel, J. Electrochem. Soc. 117, 1079 (1970).
[CrossRef]

Ramberg, E.

Ryan, R. J.

R. A. Bartolini, N. Feldstein, R. J. Ryan, J. Electrochem. Soc. 120, 1408 (1973).
[CrossRef]

Siroki, R. S.

Smits, F. M.

W. L. Bond, F. M. Smits, Bell Syst. Tech. J. 35, 1209 (1956).

Thompson, B.

Upatnieks, J.

Urbach, J. C.

Vikram, C. S.

Appl Opt. (1)

R. A. Bartolini, W. J. Hannan, D. Karlsons, M. J. Lurie, Appl Opt. 9, 2283 (1970).
[CrossRef] [PubMed]

Appl. Opt. (6)

Bell Syst. Tech. J. (1)

W. L. Bond, F. M. Smits, Bell Syst. Tech. J. 35, 1209 (1956).

J. Electrochem. Soc. (3)

B. Broyde, J. Electrochem. Soc. 117, 1555 (1970).
[CrossRef]

R. A. Bartolini, N. Feldstein, R. J. Ryan, J. Electrochem. Soc. 120, 1408 (1973).
[CrossRef]

L. J. Fried, R. Flachbart, D. E. Itlen, J. W. Raiseski, F. W. Anderson, K. V. Patel, J. Electrochem. Soc. 117, 1079 (1970).
[CrossRef]

J. Opt. Soc. Am. (6)

Microwaves (1)

H. Kogelnik, Microwaves 6, 68 (1967).

Photogr. Sci. Eng. (2)

M. S. Htoo, Photogr. Sci. Eng. 12, 169 (1968).

F. J. Loprest, E. A. Fitzgerald, Photogr. Sci. Eng. 15, 260 (1971).

Proc. IEEE (1)

Z. L. Budrikis, Proc. IEEE 60, 1635 (1970).

Proc. Roy. Soc. (London) (1)

D. Gabor, Proc. Roy. Soc. (London) A197, 454 (1949).

RCA Rev. (2)

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. J. Lurie, RCA Rev. 33, 131 (1972).

R. A. Bartolini, J. Bordogna, D. Karlsons, RCA Rev. 33, 170 (1972).

Solid State Tech. (1)

K. R. Dunham, Solid State Tech. 14, 41 (1971).
[CrossRef]

Other (2)

C. B. Neblette, Photography: Its Materials and Processes (Van Nostrand, New York, 1962).

V. Balzani, V. Carassiti, Photochemistry of Coordination Compounds (Academic, New York, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Fraunhofer hologram recording arrangement.

Fig. 2
Fig. 2

Thickness change Δd as a function of exposure E for two different development techniques.

Fig. 3
Fig. 3

Thickness change Δd as a function of exposure E using Shipley AZ-303 developer.

Fig. 4
Fig. 4

Thickness change Δd as a function of development time T for two different values of exposure E.

Fig. 5
Fig. 5

Experimental setup for determining resolution capability of Shipley AZ-1350 photoresist.

Fig. 6
Fig. 6

Spatial frequency response of Shipley AZ-1350 photoresist.

Fig. 7
Fig. 7

Demonstration of the effects of cosmetic noise. (a) Image projected with coherent illumination. (b) Same image as (a) but pinhole array in object beam path.

Fig. 8
Fig. 8

Examples of images produced from Fraunhofer holograms as a function of average exposure E0.

Fig. 9
Fig. 9

Efficiency as η function of average exposure E0 for a variety of reference-to-object beam ratios R

Fig. 10
Fig. 10

Efficiency η as a function of average exposure E0 for a variety of reference-to-object beam ratios R.

Fig. 11
Fig. 11

Signal-to-IM noise ratio S/NIM as a function of efficiency η for a variety of reference-to-object beam ratios R.

Fig. 12
Fig. 12

Signal-to-IM noise ratio S/NIM as a function of references-to-object beam ratio R for a variety of efficiencies η.

Fig. 13
Fig. 13

Example of images produced from Fraunhofer holograms as a function of hologram efficiency η. (a) η = 1.3%; (b) η = 5%; (c) η = 10%; (d) η = 20%.

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

t ( x , y ) = exp j ϕ ( x , y ) ,
ϕ ( x , y ) = ( 2 π / λ R ) ( n - 1 ) Δ d ,
Δ d = T [ r 1 - Δ r exp ( - c E ) ] ,
I 0 ( x , y ) = u 0 u 0 * + u r 2 + u 0 u r exp [ j ( ϕ r - ϕ 0 ) ] + u 0 u r exp [ - j ( ϕ r - ϕ 0 ) ] ,
Δ d = g E ,
I p = u p 2 = u R 2 J 1 2 [ ( 4 π / λ R ) ( n - 1 ) g t u 0 u r ] ;
J 1 ( a ) ~ ½ a ,
a = 2 2 π λ R ( n - 1 ) g t u 0 u r = 4 π λ R ( n - 1 ) g E I 0 u 0 u r .
a = 0.44 ,
Efficiency η = I p / u R 2 = J 1 2 [ ( 4 π / λ R ) ( n - 1 ) g t u 0 u r ] .
η = J 1 2 ( a ) .
η = J 1 2 { [ 2 π ( n - 1 ) λ R ] ( Δ r T ) [ 2 ( R ) 1 / 2 1 + R c E 0 ] } ,
η = [ 2 π ( n - 1 ) λ R ] 2 [ Δ r T ] 2 [ ( R ) 1 / 2 1 + R c E 0 ] 2
E 0 = [ u 0 2 + u r 2 ] t .
η = ( 4 S 2 E 0 2 R ) / [ ( 1 + R ) 2 ]
S = { [ π ( n - 1 ) ] / λ R } Δ r T c ( cm 2 · mJ - 1 ) ,
η = ½ ϕ 1 2 exp ( - ϕ 1 2 ) ,
ϕ 1 = ( 2 ) 1 / 2 ( 2 π / λ R ) ( n - 1 ) { [ Δ r T c ( R ) 1 / 2 E 0 ] / ( 1 + R ) } .
S / N IM = R η ,
S N IM = 4 R 4 η + η 2 { [ ( 1 + R ) 2 ] / R } ,
S / N IM ~ R / η ,
S / N IM = 2 / η 2 .
Δ d = f ( E ) .
I ( x ) = I 0 exp ( - α N 1 x ) ,
N = I 0 / h f ,
- { [ d N 1 ( t ) ] / d t } = η q ( I 0 / h f ) α N 1 ( t ) .
N 1 ( t ) = N 0 exp [ - ( η q α / h f ) I 0 t ]
D u = [ N 1 ( t ) ] / N 0 = exp ( - c E ) ,
D a = [ N 2 ( t ) ] / N 0 ,
D 1 = 1 - D u = 1 - exp ( - c E ) .
Δ d = ( D a r 1 + D u r 2 ) T ,
Δ d = T [ r 1 - Δ r exp ( - c E ) ] .
Δ d ~ Δ r T c E + r 2 T .
η = f ( Δ d ) .
r 2 = 0.015 μ m · sec - 1
Δ r c = 0.5 × 10 - 3 μ m · cm 2 · mJ - 1 · sec - 1 .
Δ r = r 1 - r 2 = 0.1 μ m · sec - 1 .
r 1 = 0.115 μ m · sec - 1 .
d = λ / sin θ ,
f = 1 / d .
d min = m E 0 ,
η = constant E 0 2 .

Metrics