Abstract

A simple grating lateral shear interferometer is described that can be made to give simultaneously two interferograms having shear in two orthogonal directions. The shear for the two orthogonal directions is produced in one plane by one double frequency crossed diffraction grating that can easily be produced holographically. Translating the grating sideways causes the irradiance of the interferogram to vary sinusoidally with time enabling the interferometer to be used with real-time heterodyne phase detection.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ronchi, Appl. Opt. 3, 437 (1964).
    [CrossRef]
  2. W. H. Steel, Interferometry (Cambridge U. P., 1967), p. 5.
  3. M. Francon, Optical Interferometry (Academic Press, New York, 1966), p. 207.
  4. A. Cornejo, D. Malacara, Appl. Opt. 9, 1897 (1970).
    [PubMed]
  5. J. B. Saunders, R. J. Bruening, Astron. J. 73, 415 (1968).
    [CrossRef]
  6. M. P. Rimmer, J. Opt. Soc. Am. 62, 1363 (1972).
  7. R. Crane, Appl. Opt. 8, 538 (1969).
  8. W. H. Stevenson, Appl. Opt. 9, 649 (1970).
    [CrossRef] [PubMed]
  9. K. Murata, in Progress in Optics, E. Wolf, Ed. (North-Holland Publishing Co., Amsterdam, 1966), Vol. 5, pp. 233–237.
    [CrossRef]
  10. H. H. Hopkins, Opt. Acta 2, 23 (1955).
    [CrossRef]
  11. D. Kelsall, Proc. Phys. Soc. 73, 465 (1959).
    [CrossRef]
  12. O. Bryngdahl, in Progress in Optics, E. Wolf Ed. (North-Holland Publishing Co., Amsterdam, 1965), Vol. 4, p. 66.
    [CrossRef]

1972 (1)

M. P. Rimmer, J. Opt. Soc. Am. 62, 1363 (1972).

1970 (2)

1969 (1)

R. Crane, Appl. Opt. 8, 538 (1969).

1968 (1)

J. B. Saunders, R. J. Bruening, Astron. J. 73, 415 (1968).
[CrossRef]

1964 (1)

1959 (1)

D. Kelsall, Proc. Phys. Soc. 73, 465 (1959).
[CrossRef]

1955 (1)

H. H. Hopkins, Opt. Acta 2, 23 (1955).
[CrossRef]

Bruening, R. J.

J. B. Saunders, R. J. Bruening, Astron. J. 73, 415 (1968).
[CrossRef]

Bryngdahl, O.

O. Bryngdahl, in Progress in Optics, E. Wolf Ed. (North-Holland Publishing Co., Amsterdam, 1965), Vol. 4, p. 66.
[CrossRef]

Cornejo, A.

Crane, R.

R. Crane, Appl. Opt. 8, 538 (1969).

Francon, M.

M. Francon, Optical Interferometry (Academic Press, New York, 1966), p. 207.

Hopkins, H. H.

H. H. Hopkins, Opt. Acta 2, 23 (1955).
[CrossRef]

Kelsall, D.

D. Kelsall, Proc. Phys. Soc. 73, 465 (1959).
[CrossRef]

Malacara, D.

Murata, K.

K. Murata, in Progress in Optics, E. Wolf, Ed. (North-Holland Publishing Co., Amsterdam, 1966), Vol. 5, pp. 233–237.
[CrossRef]

Rimmer, M. P.

M. P. Rimmer, J. Opt. Soc. Am. 62, 1363 (1972).

Ronchi, V.

Saunders, J. B.

J. B. Saunders, R. J. Bruening, Astron. J. 73, 415 (1968).
[CrossRef]

Steel, W. H.

W. H. Steel, Interferometry (Cambridge U. P., 1967), p. 5.

Stevenson, W. H.

Appl. Opt. (4)

Astron. J. (1)

J. B. Saunders, R. J. Bruening, Astron. J. 73, 415 (1968).
[CrossRef]

J. Opt. Soc. Am. (1)

M. P. Rimmer, J. Opt. Soc. Am. 62, 1363 (1972).

Opt. Acta (1)

H. H. Hopkins, Opt. Acta 2, 23 (1955).
[CrossRef]

Proc. Phys. Soc. (1)

D. Kelsall, Proc. Phys. Soc. 73, 465 (1959).
[CrossRef]

Other (4)

O. Bryngdahl, in Progress in Optics, E. Wolf Ed. (North-Holland Publishing Co., Amsterdam, 1965), Vol. 4, p. 66.
[CrossRef]

W. H. Steel, Interferometry (Cambridge U. P., 1967), p. 5.

M. Francon, Optical Interferometry (Academic Press, New York, 1966), p. 207.

K. Murata, in Progress in Optics, E. Wolf, Ed. (North-Holland Publishing Co., Amsterdam, 1966), Vol. 5, pp. 233–237.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Double frequency grating lateral shear interferometer.

Fig. 2
Fig. 2

Interferograms obtained using double frequency diffraction interferometer.

Fig. 3
Fig. 3

Interferogram obtained using double frequency crossed grating interferometer.

Tables (1)

Tables Icon

Table I Bleaching Procedure Used to Make Holographic Diffraction Grating Interferometer

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ν 1 > 1 / λ f n . o . ,
Δ Θ = λ ( ν 2 - ν 1 ) .
ω = 2 π v ( ν 2 - ν 1 ) .

Metrics