Abstract

Polymethyl methacrylate, PMMA, sensitized for λ = 0.325 μm, is shown to exhibit a peak refractive index change of 2.3 × 10−3. The index change has been characterized in relation to its sensitivity, temperature dependence, and development time. The sensitivity of the material is shown to be 1.7 × 10−4α, where α is the intensity absorption coefficient. Laser light scattered by an exposed region is found to produce a double ring pattern due to the graininess of the index variation. Three-dimensional holographic diffraction gratings were made in the PMMA, and its diffraction efficiency was measured as a function of thickness, refractive index change, and reconstruction angle. The efficiencies measured agree fairly well with the theoretical sin2 curve; however, higher peak diffraction efficiencies were obtained further out on this oscillatory curve. A maximum diffraction efficiency of 96% was obtained. Angular sensitivity measurements indicated that the effective thickness of the grating was less than its actual thickness due to the nonuniformity of the index variation with thickness. Potential applications as a dielectric waveguide, diffraction grating, and wavelength selector are discussed. Scattering, the relatively small maximum index change, and poor reproducibility are the chief limiting factors.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).
    [CrossRef]
  2. S. E. Miller, Bell Syst. Tech. J. 48, 2059 (1969).
  3. H. Kogelnik, C. V. Shank, T. P. Sosnowski, A. Dienes, Appl. Phys. Lett. 16, 499 (1970).
    [CrossRef]
  4. F. P. Laming, Polymer Eng. Sci. 11, 421 (1971).
    [CrossRef]
  5. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  6. D. Kermisch, J. Opt. Soc. Am. 59, 1409 (1969).
    [CrossRef]
  7. W. J. Tomlinson, BTL; private communication.
  8. G. A. Gary, P. D. Craven, Appl. Opt. 9, 2787 (1970).
    [PubMed]

1971

F. P. Laming, Polymer Eng. Sci. 11, 421 (1971).
[CrossRef]

1970

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).
[CrossRef]

H. Kogelnik, C. V. Shank, T. P. Sosnowski, A. Dienes, Appl. Phys. Lett. 16, 499 (1970).
[CrossRef]

G. A. Gary, P. D. Craven, Appl. Opt. 9, 2787 (1970).
[PubMed]

1969

S. E. Miller, Bell Syst. Tech. J. 48, 2059 (1969).

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

D. Kermisch, J. Opt. Soc. Am. 59, 1409 (1969).
[CrossRef]

Chandross, E. A.

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).
[CrossRef]

Craven, P. D.

Dienes, A.

H. Kogelnik, C. V. Shank, T. P. Sosnowski, A. Dienes, Appl. Phys. Lett. 16, 499 (1970).
[CrossRef]

Fork, R. L.

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).
[CrossRef]

Gary, G. A.

Kaminow, I. P.

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).
[CrossRef]

Kermisch, D.

Kogelnik, H.

H. Kogelnik, C. V. Shank, T. P. Sosnowski, A. Dienes, Appl. Phys. Lett. 16, 499 (1970).
[CrossRef]

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Laming, F. P.

F. P. Laming, Polymer Eng. Sci. 11, 421 (1971).
[CrossRef]

Miller, S. E.

S. E. Miller, Bell Syst. Tech. J. 48, 2059 (1969).

Shank, C. V.

H. Kogelnik, C. V. Shank, T. P. Sosnowski, A. Dienes, Appl. Phys. Lett. 16, 499 (1970).
[CrossRef]

Silfvast, W. T.

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).
[CrossRef]

Sosnowski, T. P.

H. Kogelnik, C. V. Shank, T. P. Sosnowski, A. Dienes, Appl. Phys. Lett. 16, 499 (1970).
[CrossRef]

Tomlinson, W. J.

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).
[CrossRef]

W. J. Tomlinson, BTL; private communication.

Appl. Opt.

Appl. Phys. Lett.

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).
[CrossRef]

H. Kogelnik, C. V. Shank, T. P. Sosnowski, A. Dienes, Appl. Phys. Lett. 16, 499 (1970).
[CrossRef]

Bell Syst. Tech. J.

S. E. Miller, Bell Syst. Tech. J. 48, 2059 (1969).

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

J. Opt. Soc. Am.

Polymer Eng. Sci.

F. P. Laming, Polymer Eng. Sci. 11, 421 (1971).
[CrossRef]

Other

W. J. Tomlinson, BTL; private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Optical density vs wavelength for two PMMA samples having different oxidation levels.

Fig. 2
Fig. 2

Refractive index change distribution in a PMMA sample after development.

Fig. 3
Fig. 3

Refractive index change vs exposure (J/cm2) for 0.325-μm radiation.

Fig. 4
Fig. 4

Variation of refractive index in PMMA as a function of development time for different development temperatures.

Fig. 5
Fig. 5

Holographic recording arrangement used to construct a three-dimensional grating.

Fig. 6
Fig. 6

Theoretical and experimental diffraction efficiency vs material thickness for two reconstruction wavelengths. Recording exposure level of 1.28 J/cm2.

Fig. 7
Fig. 7

Theoretical and experimental diffraction efficiency vs material thickness for two reconstruction wavelengths. Recording exposure level of 4.3 J/cm2.

Fig. 8
Fig. 8

Diffraction efficiency vs external reconstruction angle for two wavelengths.

Fig. 9
Fig. 9

Two-ring scattering pattern observed when exposed PMMA is illuminated with a 0.515-μm beam.

Fig. 10
Fig. 10

Plan view of the scattering experiment showing the incident beam being scattered into two distinct rings.

Fig. 11
Fig. 11

(a) Variation of internal and external scattering angles with incident angle for four separate wavelengths: λ = 0.325 μm, 0.415 μm, 0.488 μm, and 0.633 μm. The PMMA was exposed at λ = 0.325 μm. (b) β vs α relationship for the exposure wavelength λuv being greater or less than the wavelength λ of the scattered beam.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η = sin 2 ( π 0 a Δ n d t / 2 λ 0 cos θ 0 ) ,
2 Δ θ Λ / d ,
λ = 2 Λ sin θ 0 ,

Metrics