Abstract

A thermooptical technique is described for measuring the absorptivity spectrum of liquids using incoherent light. This technique is an extension of one previously used to measure absorptivity using coherent light, which was therefore limited to specific laser wavelengths. Absorptivities as small as 2 × 10−5 cm−1 have been measured with 2–3 mW of optical power. The absorptivity spectrum of chlorobenzene is characterized by lines due to overtones of C-H vibration in the infrared with low loss valleys in between. Measurements of carbon tetrachloride showed no measurable absorptivity (i.e., less than 2 × 10−5 cm−1) between 5600 Å and 10,600 Å.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Stone, J. Opt. Soc. Am. 62, 327 (1972).
    [CrossRef]
  2. K. C. Kao, T. W. Davies, J. Sci. Instrum. 1, 1063 (1968).
    [CrossRef] [PubMed]
  3. P. J. R. Laybourn, W. A. Gambling, D. T. Jones, Opto-Electron. 3, 137 (1971).
    [CrossRef]
  4. H. N. Daglish, J. C. North, New Scientist 49, 14 (1970).
  5. J. Stone, IEEE J. Quantum Electron. QE-8, 386 (1972).
    [CrossRef]

1972 (2)

J. Stone, J. Opt. Soc. Am. 62, 327 (1972).
[CrossRef]

J. Stone, IEEE J. Quantum Electron. QE-8, 386 (1972).
[CrossRef]

1971 (1)

P. J. R. Laybourn, W. A. Gambling, D. T. Jones, Opto-Electron. 3, 137 (1971).
[CrossRef]

1970 (1)

H. N. Daglish, J. C. North, New Scientist 49, 14 (1970).

1968 (1)

K. C. Kao, T. W. Davies, J. Sci. Instrum. 1, 1063 (1968).
[CrossRef] [PubMed]

Daglish, H. N.

H. N. Daglish, J. C. North, New Scientist 49, 14 (1970).

Davies, T. W.

K. C. Kao, T. W. Davies, J. Sci. Instrum. 1, 1063 (1968).
[CrossRef] [PubMed]

Gambling, W. A.

P. J. R. Laybourn, W. A. Gambling, D. T. Jones, Opto-Electron. 3, 137 (1971).
[CrossRef]

Jones, D. T.

P. J. R. Laybourn, W. A. Gambling, D. T. Jones, Opto-Electron. 3, 137 (1971).
[CrossRef]

Kao, K. C.

K. C. Kao, T. W. Davies, J. Sci. Instrum. 1, 1063 (1968).
[CrossRef] [PubMed]

Laybourn, P. J. R.

P. J. R. Laybourn, W. A. Gambling, D. T. Jones, Opto-Electron. 3, 137 (1971).
[CrossRef]

North, J. C.

H. N. Daglish, J. C. North, New Scientist 49, 14 (1970).

Stone, J.

J. Stone, IEEE J. Quantum Electron. QE-8, 386 (1972).
[CrossRef]

J. Stone, J. Opt. Soc. Am. 62, 327 (1972).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Stone, IEEE J. Quantum Electron. QE-8, 386 (1972).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Sci. Instrum. (1)

K. C. Kao, T. W. Davies, J. Sci. Instrum. 1, 1063 (1968).
[CrossRef] [PubMed]

New Scientist (1)

H. N. Daglish, J. C. North, New Scientist 49, 14 (1970).

Opto-Electron. (1)

P. J. R. Laybourn, W. A. Gambling, D. T. Jones, Opto-Electron. 3, 137 (1971).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical arrangement for loss measurement using a laser heating source1; a, laser; b, water cell; c, plate 1; d, sample cell; e, plate 2; f, interferometer beam; g reference beam; h, signal detector; i, mirror; j, reference detector.

Fig. 2
Fig. 2

Optical arrangement to measure absorptivity spectrum. a and b are laser beams; c and d are incoherent light beams.

Fig. 3
Fig. 3

Measured beam profile of incoherent light beam at position of sample cell.

Fig. 4
Fig. 4

Measured heating beam power spectrum from incoherent light source at position of sample cell.

Fig. 5
Fig. 5

Absorptivity spectrum of chlorobenzene (solid line) and transmission loss spectrum of a glass fiber filled with bromobenzene (broken line).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ / Δ t = ( 1 / 1.2 ) ( d / λ ) ( 1 / ρ c ) ( n / T ) ( 1 / w 0 2 ) α P ,

Metrics