Abstract

Arrays of ~2-mm diam, f/9, diffraction-limited Fresnel zone plates are made and measured. Amplitude zone plates are fabricated by conventional photolithographic techniques, while a specially developed evaporation/etching technique is used for phase zone plates. The point spread function of such zone plates is measured with a rotating cube scanner and found to agree closely with theory over more than one order of magnitude.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lu, Proc. IEEE 56, 116 (1968).
    [CrossRef]
  2. G. Groh, Appl. Opt. 7, 1643 (1968).
    [CrossRef] [PubMed]
  3. B. Hill, Appl. Opt. 11, 182 (1972).
    [CrossRef] [PubMed]
  4. A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. Lurie, RCA Rev. 33, 131 (1972).
  5. R. G. Olsson, “Generation of MicroCircuit Arrays by Diffraction Imaging,” in Optics in Microelectronics Meeting Digest (Optical Society of America, Washington, D. C., 1971).
  6. A. R. Jones, Brit. J. Appl. Phys. (J. Phys. D) 2, 1789 (1969).
    [CrossRef]
  7. D. J. Stigliani, R. Mittra, R. G. Semonin, J. Opt. Soc. Am. 57, 610 (1967).
    [CrossRef]
  8. M. Bottema, J. Opt. Soc. Am. 59, 1632 (1969).
    [CrossRef]
  9. M. Sussman, Am. J. Phys. 28, 394 (1960).
    [CrossRef]
  10. O. E. Myers, Am. J. Phys. 19, 359 (1951).
    [CrossRef]
  11. A. Boivin, J. Opt. Soc. Am. 42, 60 (1952).
    [CrossRef]
  12. G. S. Waldman, J. Opt. Soc. Am. 56, 215 (1966).
    [CrossRef]
  13. M. H. Horman, H. M. Chan, Appl. Opt. 6, 317 (1967).
    [CrossRef] [PubMed]
  14. K. I. Clifford, G. S. Waldman, Appl. Opt. 6, 1415 (1967).
    [CrossRef] [PubMed]
  15. M. H. Horman, Appl. Opt. 6, 1415 (1967).
    [CrossRef]
  16. M. H. Horman, Appl. Opt. 6, 2011 (1967).
    [CrossRef] [PubMed]
  17. M. Young, J. Opt. Soc. Am. 62, 972 (1972).
    [CrossRef]
  18. L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, Opt. Commun. 5, 232 (1972).
    [CrossRef]
  19. The following process was developed with the assistance of D. M. Hoffman and E. A. James of RCA Laboratories.

1972

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. Lurie, RCA Rev. 33, 131 (1972).

L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, Opt. Commun. 5, 232 (1972).
[CrossRef]

B. Hill, Appl. Opt. 11, 182 (1972).
[CrossRef] [PubMed]

M. Young, J. Opt. Soc. Am. 62, 972 (1972).
[CrossRef]

1969

A. R. Jones, Brit. J. Appl. Phys. (J. Phys. D) 2, 1789 (1969).
[CrossRef]

M. Bottema, J. Opt. Soc. Am. 59, 1632 (1969).
[CrossRef]

1968

1967

1966

1960

M. Sussman, Am. J. Phys. 28, 394 (1960).
[CrossRef]

1952

1951

O. E. Myers, Am. J. Phys. 19, 359 (1951).
[CrossRef]

Boivin, A.

Bottema, M.

Chan, H. M.

Clifford, K. I.

d’Auria, L.

L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, Opt. Commun. 5, 232 (1972).
[CrossRef]

Firester, A. H.

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. Lurie, RCA Rev. 33, 131 (1972).

Fox, E. C.

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. Lurie, RCA Rev. 33, 131 (1972).

Gayeski, T.

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. Lurie, RCA Rev. 33, 131 (1972).

Groh, G.

Hannan, W. J.

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. Lurie, RCA Rev. 33, 131 (1972).

Hill, B.

Horman, M. H.

Huignard, J. P.

L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, Opt. Commun. 5, 232 (1972).
[CrossRef]

Jones, A. R.

A. R. Jones, Brit. J. Appl. Phys. (J. Phys. D) 2, 1789 (1969).
[CrossRef]

Lu, S.

S. Lu, Proc. IEEE 56, 116 (1968).
[CrossRef]

Lurie, M.

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. Lurie, RCA Rev. 33, 131 (1972).

Mittra, R.

Myers, O. E.

O. E. Myers, Am. J. Phys. 19, 359 (1951).
[CrossRef]

Olsson, R. G.

R. G. Olsson, “Generation of MicroCircuit Arrays by Diffraction Imaging,” in Optics in Microelectronics Meeting Digest (Optical Society of America, Washington, D. C., 1971).

Roy, A. M.

L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, Opt. Commun. 5, 232 (1972).
[CrossRef]

Semonin, R. G.

Spitz, E.

L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, Opt. Commun. 5, 232 (1972).
[CrossRef]

Stigliani, D. J.

Sussman, M.

M. Sussman, Am. J. Phys. 28, 394 (1960).
[CrossRef]

Waldman, G. S.

Young, M.

Am. J. Phys.

M. Sussman, Am. J. Phys. 28, 394 (1960).
[CrossRef]

O. E. Myers, Am. J. Phys. 19, 359 (1951).
[CrossRef]

Appl. Opt.

Brit. J. Appl. Phys. (J. Phys. D)

A. R. Jones, Brit. J. Appl. Phys. (J. Phys. D) 2, 1789 (1969).
[CrossRef]

J. Opt. Soc. Am.

Opt. Commun.

L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, Opt. Commun. 5, 232 (1972).
[CrossRef]

Proc. IEEE

S. Lu, Proc. IEEE 56, 116 (1968).
[CrossRef]

RCA Rev.

A. H. Firester, E. C. Fox, T. Gayeski, W. J. Hannan, M. Lurie, RCA Rev. 33, 131 (1972).

Other

R. G. Olsson, “Generation of MicroCircuit Arrays by Diffraction Imaging,” in Optics in Microelectronics Meeting Digest (Optical Society of America, Washington, D. C., 1971).

The following process was developed with the assistance of D. M. Hoffman and E. A. James of RCA Laboratories.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Apparatus for measuring the point spread function of micro zone plates.

Fig. 2
Fig. 2

(a) Computed (solid line) and measured (dashed and dot–dashed lines represent two distinct zone plates) point spread function for 120-zone positive amplitude (central zone transparent) zone plate. Focal length 17.1 mm, over-all diameter = 1.9 mm, f/9. (For comparison, the first null in the Airy pattern of an equivalent lens is 4.8 μm.) (b) Oscilloscope trace of point spread function (3.5 μm/horizontal division). Upper trace: signal scan, linear vertical scale. Lower trace: 100-channel signal averager scan, linear vertical scan.

Fig. 3
Fig. 3

Computed (solid line) and measured (dashed and dot–dashed lines represent two distinct zone plates) point spread function for 120-zone phase zone plate. Focal length = 17.1 mm, over-all diameter = 1.9 mm, f/9.

Fig. 4
Fig. 4

Computed (solid line) and measured (dashed and dot–dashed lines represent two distinct zone plates) point spread function for 100-zone negative amplitude (central zone opaque) zone plate. Focal length = 2.4 mm, over-all diameter = 2.1 mm, f/12. (For comparison, the first null in the Airy pattern of an equivalent lens is 6.5 μm.)

Fig. 5
Fig. 5

Computed (solid line) and measured (dashed and dot–dashed represent two distinct zone plates) point spread function for 100-zone phase zone plate. Focal length = 25.4 mm, over-all diameter = 2.1 mm, f/12.

Fig. 6
Fig. 6

Fabrication process for phase zone plates.

Fig. 7
Fig. 7

Photomicrograph of phase zone plate (100 zones, 25.4-mm focal length, over-all diameter = 2.1 mm, f/12).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u + ( β ) = [ 2 / ( N + 1 ) ] exp ( j π F β 2 / λ ) · n = 0 ( N - 1 ) / 2 [ Z ( 2 n + 1 , K ) - Z ( 2 n , K ) ]
u - ( β ) = - ( 2 / N ) exp ( j π F β 2 / λ ) · n = 0 ( N - 2 ) / 2 [ Z ( 2 n + 2 , K ) - Z ( 2 n + 1 ) K ] ,
u ϕ ( β ) = { 1 2 [ u + ( β ) N - u - ( β ) N - 1 ] Positive outermost zone 1 2 [ u + ( β ) N - 1 - u - ( β ) N ] Negative outermost zone ,
x = d sin θ { 1 - [ ( 1 - sin 2 θ ) / ( n 2 - sin 2 θ ) ] 1 / 2 } d θ [ ( n - 1 ) / n ] ,

Metrics