Abstract

We present our results on optical waveguides formed by thermal diffusion of ions in glass. It was found that the peak of the ion-exchanged region can be shifted into the substrate interior by limiting the diffusion process. We also found that low loss films (<0.1 dB/cm) can be fabricated using this process and that the modal losses in these films do not agree with those losses predicted by existing theories. Also, the ion-exchange process has proved to be a simple means for fabricating tapered-edge couplers.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).
  2. P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
    [CrossRef]
  3. D. H. Hensler, J. D. Cuthbert, R. J. Martin, P. K. Tien, Appl. Opt. 5, 1037 (1971).
    [CrossRef]
  4. P. K. Tien, G. Smolinsky, R. J. Martin, Appl. Opt. 10, 1037 (1971).
    [CrossRef] [PubMed]
  5. E. R. Schineller, R. Flam, D. Wilmot, J. Opt. Soc. Am. 58, 1171 (1968).
    [CrossRef]
  6. R. D. Standley, W. M. Gibson, J. W. Rodgers, Appl. Opt. 11, 1313 (1972).
    [CrossRef] [PubMed]
  7. T. Izawa, H. Nakagone, T. Kinura, 1972 Quantum Electronics Conference, Montreal, Canada (1972).
  8. A. J. Burggraaf, J. Cornelissen, Phys. Chem. Glasses 5, 123 (1964).
  9. A. J. Burggraaf, Phillips Res. Repts. Suppl. No. 3 (1966).
  10. H. A. Perry, Naval Ordnance Laboratory Rep. NOLTR 72-21 (17March1971).
  11. R. H. Doremus, J. Phys. Chem. 68, 2212 (1964).
    [CrossRef]
  12. P. K. Tien, Appl. Opt. 10, 2395 (1971).
    [CrossRef] [PubMed]

1972

1971

1969

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

1968

1964

A. J. Burggraaf, J. Cornelissen, Phys. Chem. Glasses 5, 123 (1964).

R. H. Doremus, J. Phys. Chem. 68, 2212 (1964).
[CrossRef]

Burggraaf, A. J.

A. J. Burggraaf, J. Cornelissen, Phys. Chem. Glasses 5, 123 (1964).

A. J. Burggraaf, Phillips Res. Repts. Suppl. No. 3 (1966).

Cornelissen, J.

A. J. Burggraaf, J. Cornelissen, Phys. Chem. Glasses 5, 123 (1964).

Cuthbert, J. D.

D. H. Hensler, J. D. Cuthbert, R. J. Martin, P. K. Tien, Appl. Opt. 5, 1037 (1971).
[CrossRef]

Doremus, R. H.

R. H. Doremus, J. Phys. Chem. 68, 2212 (1964).
[CrossRef]

Flam, R.

Gibson, W. M.

Goell, J. E.

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

Hensler, D. H.

D. H. Hensler, J. D. Cuthbert, R. J. Martin, P. K. Tien, Appl. Opt. 5, 1037 (1971).
[CrossRef]

Izawa, T.

T. Izawa, H. Nakagone, T. Kinura, 1972 Quantum Electronics Conference, Montreal, Canada (1972).

Kinura, T.

T. Izawa, H. Nakagone, T. Kinura, 1972 Quantum Electronics Conference, Montreal, Canada (1972).

Martin, R. J.

D. H. Hensler, J. D. Cuthbert, R. J. Martin, P. K. Tien, Appl. Opt. 5, 1037 (1971).
[CrossRef]

P. K. Tien, G. Smolinsky, R. J. Martin, Appl. Opt. 10, 1037 (1971).
[CrossRef] [PubMed]

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Nakagone, H.

T. Izawa, H. Nakagone, T. Kinura, 1972 Quantum Electronics Conference, Montreal, Canada (1972).

Perry, H. A.

H. A. Perry, Naval Ordnance Laboratory Rep. NOLTR 72-21 (17March1971).

Rodgers, J. W.

Schineller, E. R.

Smolinsky, G.

Standley, R. D.

R. D. Standley, W. M. Gibson, J. W. Rodgers, Appl. Opt. 11, 1313 (1972).
[CrossRef] [PubMed]

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

Tien, P. K.

D. H. Hensler, J. D. Cuthbert, R. J. Martin, P. K. Tien, Appl. Opt. 5, 1037 (1971).
[CrossRef]

P. K. Tien, Appl. Opt. 10, 2395 (1971).
[CrossRef] [PubMed]

P. K. Tien, G. Smolinsky, R. J. Martin, Appl. Opt. 10, 1037 (1971).
[CrossRef] [PubMed]

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Ulrich, R.

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Wilmot, D.

Appl. Opt.

Appl. Phys. Lett.

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Bell Syst. Tech. J.

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

J. Opt. Soc. Am.

J. Phys. Chem.

R. H. Doremus, J. Phys. Chem. 68, 2212 (1964).
[CrossRef]

Phys. Chem. Glasses

A. J. Burggraaf, J. Cornelissen, Phys. Chem. Glasses 5, 123 (1964).

Other

A. J. Burggraaf, Phillips Res. Repts. Suppl. No. 3 (1966).

H. A. Perry, Naval Ordnance Laboratory Rep. NOLTR 72-21 (17March1971).

T. Izawa, H. Nakagone, T. Kinura, 1972 Quantum Electronics Conference, Montreal, Canada (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Ion-exchange profiles created in stirred AgNO3 baths. (a) Calcium and sodium profiles in an untreated Starlux sub. strate. (b) and (c) Silver, sodium, and calcium profiles in 24-h dipped substrates. In (b) and (c) the sodium and calcium profiles were not corrected for characteristic x-ray absorption by the silver.

Fig. 2
Fig. 2

Ion-exchange profiles created in unstirred AgNO3 baths. (a) Al3+ and Mg2+ profiles in an untreated Starlux substrate. (b) and (c) The peak of the silver profiles is displaced in toward the substrate interior as discussed in the text. Again, the sodium and calcium profiles have to be corrected for x-ray absorption.

Fig. 3
Fig. 3

Ion-exchange profile created in stirred KNO3 bath.

Fig. 4
Fig. 4

Losses in ion-exchanged waveguides. The dashed curve is calculated from the polished theory [Eq. (2)] for losses caused by surface scatter. The solid curve represents calculated volume type losses. The circles and rosses are the measured data for Ag+ ion-exchanged waveguides.

Tables (1)

Tables Icon

Table I Experimental Propagation Constants for Thermally Exchanged Thin Films in Glass at 6328 Å

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C ( x , t ) = C o erfc ( x / 2 Dt )
α = K 2 ( cos 3 θ 1 / sin θ 1 ) ( 1 / 2 W eff ) ,

Metrics