Abstract

An experimental, high density optical memory using MA color centers in KCI has been built to study the application of color centers as read, write, and erase computer bulk memories. MA centers are employed as a binary indicator by making use of their ability to reorient in the KCI lattice when excited with either [110] or [ 1¯10] polarized 531-nm light. Information is read out with circularly polarized 531-nm light. Results indicate that writing times of less than 5 sec and packing densities exceeding 106 bits/cm2 will be possible in a fully developed system.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Schneider, Appl. Opt. 6, 2197 (1967).
    [CrossRef] [PubMed]
  2. I. Schneider, M. Marrone, M. Kabler, Appl. Opt. 9, 1163 (1970).
    [CrossRef] [PubMed]
  3. I. Schneider, Phys. Rev. Lett. 16, 743 (1966).
    [CrossRef]
  4. W. D. Compton, H. Rabin, in Solid State Physics, F. Seitz, D. Turnbull, Eds. (Academic Press, New York, 1964), Vol. 16, pp. 136–141.
    [CrossRef]
  5. I. Schneider, Solid State Commun. 9, 49 (1971).
    [CrossRef]
  6. M. Aegerter, F. Lüty, Phys. Stat. Sol. (b) 43, 227 (1971).
    [CrossRef]
  7. Linearly polarized light could also be used, but it is experimentally more convenient to use circularly polarized light.
  8. K. Elsässer, H. Seidel, Phys. Stat. Sol. (b) 43, 301 (1971).
    [CrossRef]
  9. C. Z. Van Doorn, Philips Res. Report Suppl. 4 (1962), p. 1.
  10. D. Curie, Luminescence in Crystals (Methuen, London, 1960), p.68.
  11. W. B. Fowler, Physics of Color Centers (Academic Press, New York, 1968), pp. 627–628.
  12. C. J. Delbecq, Z. Phys. 171, 560 (1963).
    [CrossRef]
  13. D. I. Innes, A. L. Bloom, Spectra Phys. Tech. Bull. No. 5 (1966).
  14. A. S. Mackin, Appl. Opt. 9, 1658 (1970).
    [CrossRef] [PubMed]
  15. T. Matsuyama, M. Hirai, J. Phys. Soc. Japan 27, 1526 (1969).
    [CrossRef]
  16. F. Lüty, Intern. Conf. Color Centers in Ionic Crystals, Reading, England, C48 (1971).
  17. R. Fieschi, R. Oggioni, P. Podini, Acta Phys. Polon. 26, 633 (1964).

1971 (3)

I. Schneider, Solid State Commun. 9, 49 (1971).
[CrossRef]

M. Aegerter, F. Lüty, Phys. Stat. Sol. (b) 43, 227 (1971).
[CrossRef]

K. Elsässer, H. Seidel, Phys. Stat. Sol. (b) 43, 301 (1971).
[CrossRef]

1970 (2)

1969 (1)

T. Matsuyama, M. Hirai, J. Phys. Soc. Japan 27, 1526 (1969).
[CrossRef]

1967 (1)

1966 (2)

D. I. Innes, A. L. Bloom, Spectra Phys. Tech. Bull. No. 5 (1966).

I. Schneider, Phys. Rev. Lett. 16, 743 (1966).
[CrossRef]

1964 (1)

R. Fieschi, R. Oggioni, P. Podini, Acta Phys. Polon. 26, 633 (1964).

1963 (1)

C. J. Delbecq, Z. Phys. 171, 560 (1963).
[CrossRef]

Aegerter, M.

M. Aegerter, F. Lüty, Phys. Stat. Sol. (b) 43, 227 (1971).
[CrossRef]

Bloom, A. L.

D. I. Innes, A. L. Bloom, Spectra Phys. Tech. Bull. No. 5 (1966).

Compton, W. D.

W. D. Compton, H. Rabin, in Solid State Physics, F. Seitz, D. Turnbull, Eds. (Academic Press, New York, 1964), Vol. 16, pp. 136–141.
[CrossRef]

Curie, D.

D. Curie, Luminescence in Crystals (Methuen, London, 1960), p.68.

Delbecq, C. J.

C. J. Delbecq, Z. Phys. 171, 560 (1963).
[CrossRef]

Elsässer, K.

K. Elsässer, H. Seidel, Phys. Stat. Sol. (b) 43, 301 (1971).
[CrossRef]

Fieschi, R.

R. Fieschi, R. Oggioni, P. Podini, Acta Phys. Polon. 26, 633 (1964).

Fowler, W. B.

W. B. Fowler, Physics of Color Centers (Academic Press, New York, 1968), pp. 627–628.

Hirai, M.

T. Matsuyama, M. Hirai, J. Phys. Soc. Japan 27, 1526 (1969).
[CrossRef]

Innes, D. I.

D. I. Innes, A. L. Bloom, Spectra Phys. Tech. Bull. No. 5 (1966).

Kabler, M.

Lüty, F.

M. Aegerter, F. Lüty, Phys. Stat. Sol. (b) 43, 227 (1971).
[CrossRef]

F. Lüty, Intern. Conf. Color Centers in Ionic Crystals, Reading, England, C48 (1971).

Mackin, A. S.

Marrone, M.

Matsuyama, T.

T. Matsuyama, M. Hirai, J. Phys. Soc. Japan 27, 1526 (1969).
[CrossRef]

Oggioni, R.

R. Fieschi, R. Oggioni, P. Podini, Acta Phys. Polon. 26, 633 (1964).

Podini, P.

R. Fieschi, R. Oggioni, P. Podini, Acta Phys. Polon. 26, 633 (1964).

Rabin, H.

W. D. Compton, H. Rabin, in Solid State Physics, F. Seitz, D. Turnbull, Eds. (Academic Press, New York, 1964), Vol. 16, pp. 136–141.
[CrossRef]

Schneider, I.

Seidel, H.

K. Elsässer, H. Seidel, Phys. Stat. Sol. (b) 43, 301 (1971).
[CrossRef]

Van Doorn, C. Z.

C. Z. Van Doorn, Philips Res. Report Suppl. 4 (1962), p. 1.

Acta Phys. Polon. (1)

R. Fieschi, R. Oggioni, P. Podini, Acta Phys. Polon. 26, 633 (1964).

Appl. Opt. (3)

J. Phys. Soc. Japan (1)

T. Matsuyama, M. Hirai, J. Phys. Soc. Japan 27, 1526 (1969).
[CrossRef]

Phys. Rev. Lett. (1)

I. Schneider, Phys. Rev. Lett. 16, 743 (1966).
[CrossRef]

Phys. Stat. Sol. (b) (2)

K. Elsässer, H. Seidel, Phys. Stat. Sol. (b) 43, 301 (1971).
[CrossRef]

M. Aegerter, F. Lüty, Phys. Stat. Sol. (b) 43, 227 (1971).
[CrossRef]

Solid State Commun. (1)

I. Schneider, Solid State Commun. 9, 49 (1971).
[CrossRef]

Spectra Phys. Tech. Bull. No. 5 (1)

D. I. Innes, A. L. Bloom, Spectra Phys. Tech. Bull. No. 5 (1966).

Z. Phys. (1)

C. J. Delbecq, Z. Phys. 171, 560 (1963).
[CrossRef]

Other (6)

Linearly polarized light could also be used, but it is experimentally more convenient to use circularly polarized light.

F. Lüty, Intern. Conf. Color Centers in Ionic Crystals, Reading, England, C48 (1971).

C. Z. Van Doorn, Philips Res. Report Suppl. 4 (1962), p. 1.

D. Curie, Luminescence in Crystals (Methuen, London, 1960), p.68.

W. B. Fowler, Physics of Color Centers (Academic Press, New York, 1968), pp. 627–628.

W. D. Compton, H. Rabin, in Solid State Physics, F. Seitz, D. Turnbull, Eds. (Academic Press, New York, 1964), Vol. 16, pp. 136–141.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

An MA center referred to an unit cell of the KCl lattice.

Fig. 2
Fig. 2

Top: The F center absorption band in KCl. Center: MA absorption bands and dipoles for KCl. Bottom: MA+ absorption bands and dipoles for KCl.

Fig. 3
Fig. 3

The two MA orientations used in the memory. In practice P1 and P2 correspond to horizontally and vertically polarized light.

Fig. 4
Fig. 4

Absorption spectra for a KCl crystal containing F and MA centers. Solid line: absorption of unaligned F and MA centers measured with unpolarized light. Dashed line: absorption measured with [ 1 ¯10] polarized light after alignment with [110] 531-nm light incident along the [001] axis. Dotted-dashed line: absorption measured with [110] polarized light after alignment with [110] 531-nm light.

Fig. 5
Fig. 5

(a) Reading pulse outputs of a bit written to transmit [110] polarized 531-nm light. (b) Reading pulse outputs of a bit written to transmit [ 1 ¯10] polarized 531-nm light.

Fig. 6
Fig. 6

A schematic of the memory.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M A ω M A + ω M A + e - M A . Orientation 1 Orientation 2
M A ω F + F A ,
F + M A R .
( Δ v 2 / Δ v 1 ) 2 ( Δ u 2 / Δ u 1 ) [ tan - 1 ( Δ u 1 ) / tan - 1 ( Δ u 2 ) ] ,

Metrics