Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Speckle Reduction Using Multiple Tones of Illumination

Not Accessible

Your library or personal account may give you access

Abstract

The occurrence and smoothing of speckle are studied as a function of the line width for a highly collimated illuminating source. A general theory is presented for speckling in the image of a partially diffuse, phase type of object, which has a variable number of random scattering centers per resolution element. Then, an expression is derived for the wavelength spacing required to decouple the speckle patterns arising from two monochromatic tones in an imaging system, thereby establishing that it is feasible to smooth speckle using multicolor illumination. This theory is verified in a series of experiments using both laser illumination and band-limited light from a carbon arc. With highly collimated sources, we show that speckle appears laserlike for an imaged diffuser even up to line widths of 5 Å. Then, smoothing of speckle is demonstrated in the imaging of a diffuser and for a section of an optic nerve when the illumination is provided by six narrow lines spread over 1500 Å. Since with color-blind, panchromatic viewing the speckle smooths, a direct extension of this method to holographic microscopy, using a multitone laser, should permit one to record and reconstruct holograms of diffraction-limited resolution that are essentially speckle-free.

© 1973 Optical Society of America

Full Article  |  PDF Article
More Like This
Speckle Reduction in Holography by Means of Random Spatial Sampling

F. T. S. Yu and E. Y. Wang
Appl. Opt. 12(7) 1656-1659 (1973)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (49)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved