Abstract

Present trends toward the development and application of exceptionally high quality optical materials have made requirements on optical loss so stringent that they exceed the capabilities of existing measurement techniques. This work describes a calorimetric method for determining optical absorption in bulk materials which is over an order of magnitude more sensitive than previous methods. The large circulating optical power within a laser cavity is used to heat a small rod shaped sample of test material placed within the cavity. The optical absorption within the sample causes its temperature to increase until the absorbed power is balanced by heat leakage out of the rod. To minimize this leakage, the rod is thermally isolated from its surroundings. The optical loss in the sample can be calculated knowing the optical power passing through it, its temperature rise, and the cooling time constant which is determined by abruptly turning off the laser. Losses as low as 2.3 ± 0.5 dB/km at 1.064 μ have been measured with high reliability.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. F. Roberts, Conference on Lasers and Opto-Electronics, Southampton, England (25–28 March 1969). (Unpublished).
  2. K. C. Kao, G. A. Hockham, Proc. IEEE 113, 1151 (1966).
  3. F. P. Kapron, D. B. Keck, R. D. Maurer, Appl. Phys. Lett. 17, 423 (1970).
    [CrossRef]
  4. K. C. Kao, T. W. Davies, J. Sci. Instrum. 1, 1063 (1968).
    [CrossRef] [PubMed]
  5. M. W. Jones, K. C. Kao, J. Sci. Instrum. 2, 331 (1969).
    [CrossRef]
  6. T. Kushida, J. E. Geusic, Phys. Rev. Lett. 21, 1172 (1968).
    [CrossRef]
  7. M. W. Dowley, E. B. Hodges, IEEE J. Quantum Electron. QE-4, 552 (1968).
    [CrossRef]
  8. D. A. Pinnow, IEEE Ultrasonics Symposium, Miami, Fla. (6–8 Dec. 1971).
  9. F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).
  10. A. J. Brown, S. M. Marco, Introduction to Heat Transfer (McGraw-Hill, New York, 1958), p. 169.
  11. International Critical Tables (McGraw-Hill, New York, 1929), Vol. 5, p. 105.
  12. H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959).
  13. Amersil, Inc., Catalog No. Em-9227.
  14. T. C. Rich, D. A. Pinnow, Appl. Phys. Lett. 20, 264 (1972).
    [CrossRef]
  15. E. D. Kolb, D. A. Pinnow, T. C. Rich, R. A. Laudise, A. R. Tynes, N. C. Lias, E. E. Grudenski, Mater. Res. Bull. 1, 397 (1972).
    [CrossRef]

1972 (2)

T. C. Rich, D. A. Pinnow, Appl. Phys. Lett. 20, 264 (1972).
[CrossRef]

E. D. Kolb, D. A. Pinnow, T. C. Rich, R. A. Laudise, A. R. Tynes, N. C. Lias, E. E. Grudenski, Mater. Res. Bull. 1, 397 (1972).
[CrossRef]

1970 (1)

F. P. Kapron, D. B. Keck, R. D. Maurer, Appl. Phys. Lett. 17, 423 (1970).
[CrossRef]

1969 (1)

M. W. Jones, K. C. Kao, J. Sci. Instrum. 2, 331 (1969).
[CrossRef]

1968 (3)

T. Kushida, J. E. Geusic, Phys. Rev. Lett. 21, 1172 (1968).
[CrossRef]

M. W. Dowley, E. B. Hodges, IEEE J. Quantum Electron. QE-4, 552 (1968).
[CrossRef]

K. C. Kao, T. W. Davies, J. Sci. Instrum. 1, 1063 (1968).
[CrossRef] [PubMed]

1966 (1)

K. C. Kao, G. A. Hockham, Proc. IEEE 113, 1151 (1966).

Brown, A. J.

A. J. Brown, S. M. Marco, Introduction to Heat Transfer (McGraw-Hill, New York, 1958), p. 169.

Carslaw, H. S.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959).

Davies, T. W.

K. C. Kao, T. W. Davies, J. Sci. Instrum. 1, 1063 (1968).
[CrossRef] [PubMed]

Dowley, M. W.

M. W. Dowley, E. B. Hodges, IEEE J. Quantum Electron. QE-4, 552 (1968).
[CrossRef]

Geusic, J. E.

T. Kushida, J. E. Geusic, Phys. Rev. Lett. 21, 1172 (1968).
[CrossRef]

Grudenski, E. E.

E. D. Kolb, D. A. Pinnow, T. C. Rich, R. A. Laudise, A. R. Tynes, N. C. Lias, E. E. Grudenski, Mater. Res. Bull. 1, 397 (1972).
[CrossRef]

Hockham, G. A.

K. C. Kao, G. A. Hockham, Proc. IEEE 113, 1151 (1966).

Hodges, E. B.

M. W. Dowley, E. B. Hodges, IEEE J. Quantum Electron. QE-4, 552 (1968).
[CrossRef]

Jaeger, J. C.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959).

Jenkins, F. A.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).

Jones, M. W.

M. W. Jones, K. C. Kao, J. Sci. Instrum. 2, 331 (1969).
[CrossRef]

Kao, K. C.

M. W. Jones, K. C. Kao, J. Sci. Instrum. 2, 331 (1969).
[CrossRef]

K. C. Kao, T. W. Davies, J. Sci. Instrum. 1, 1063 (1968).
[CrossRef] [PubMed]

K. C. Kao, G. A. Hockham, Proc. IEEE 113, 1151 (1966).

Kapron, F. P.

F. P. Kapron, D. B. Keck, R. D. Maurer, Appl. Phys. Lett. 17, 423 (1970).
[CrossRef]

Keck, D. B.

F. P. Kapron, D. B. Keck, R. D. Maurer, Appl. Phys. Lett. 17, 423 (1970).
[CrossRef]

Kolb, E. D.

E. D. Kolb, D. A. Pinnow, T. C. Rich, R. A. Laudise, A. R. Tynes, N. C. Lias, E. E. Grudenski, Mater. Res. Bull. 1, 397 (1972).
[CrossRef]

Kushida, T.

T. Kushida, J. E. Geusic, Phys. Rev. Lett. 21, 1172 (1968).
[CrossRef]

Laudise, R. A.

E. D. Kolb, D. A. Pinnow, T. C. Rich, R. A. Laudise, A. R. Tynes, N. C. Lias, E. E. Grudenski, Mater. Res. Bull. 1, 397 (1972).
[CrossRef]

Lias, N. C.

E. D. Kolb, D. A. Pinnow, T. C. Rich, R. A. Laudise, A. R. Tynes, N. C. Lias, E. E. Grudenski, Mater. Res. Bull. 1, 397 (1972).
[CrossRef]

Marco, S. M.

A. J. Brown, S. M. Marco, Introduction to Heat Transfer (McGraw-Hill, New York, 1958), p. 169.

Maurer, R. D.

F. P. Kapron, D. B. Keck, R. D. Maurer, Appl. Phys. Lett. 17, 423 (1970).
[CrossRef]

Pinnow, D. A.

E. D. Kolb, D. A. Pinnow, T. C. Rich, R. A. Laudise, A. R. Tynes, N. C. Lias, E. E. Grudenski, Mater. Res. Bull. 1, 397 (1972).
[CrossRef]

T. C. Rich, D. A. Pinnow, Appl. Phys. Lett. 20, 264 (1972).
[CrossRef]

D. A. Pinnow, IEEE Ultrasonics Symposium, Miami, Fla. (6–8 Dec. 1971).

Rich, T. C.

E. D. Kolb, D. A. Pinnow, T. C. Rich, R. A. Laudise, A. R. Tynes, N. C. Lias, E. E. Grudenski, Mater. Res. Bull. 1, 397 (1972).
[CrossRef]

T. C. Rich, D. A. Pinnow, Appl. Phys. Lett. 20, 264 (1972).
[CrossRef]

Roberts, F. F.

F. F. Roberts, Conference on Lasers and Opto-Electronics, Southampton, England (25–28 March 1969). (Unpublished).

Tynes, A. R.

E. D. Kolb, D. A. Pinnow, T. C. Rich, R. A. Laudise, A. R. Tynes, N. C. Lias, E. E. Grudenski, Mater. Res. Bull. 1, 397 (1972).
[CrossRef]

White, H. E.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).

Appl. Phys. Lett. (2)

F. P. Kapron, D. B. Keck, R. D. Maurer, Appl. Phys. Lett. 17, 423 (1970).
[CrossRef]

T. C. Rich, D. A. Pinnow, Appl. Phys. Lett. 20, 264 (1972).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. W. Dowley, E. B. Hodges, IEEE J. Quantum Electron. QE-4, 552 (1968).
[CrossRef]

J. Sci. Instrum. (2)

K. C. Kao, T. W. Davies, J. Sci. Instrum. 1, 1063 (1968).
[CrossRef] [PubMed]

M. W. Jones, K. C. Kao, J. Sci. Instrum. 2, 331 (1969).
[CrossRef]

Mater. Res. Bull. (1)

E. D. Kolb, D. A. Pinnow, T. C. Rich, R. A. Laudise, A. R. Tynes, N. C. Lias, E. E. Grudenski, Mater. Res. Bull. 1, 397 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

T. Kushida, J. E. Geusic, Phys. Rev. Lett. 21, 1172 (1968).
[CrossRef]

Proc. IEEE (1)

K. C. Kao, G. A. Hockham, Proc. IEEE 113, 1151 (1966).

Other (7)

F. F. Roberts, Conference on Lasers and Opto-Electronics, Southampton, England (25–28 March 1969). (Unpublished).

D. A. Pinnow, IEEE Ultrasonics Symposium, Miami, Fla. (6–8 Dec. 1971).

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).

A. J. Brown, S. M. Marco, Introduction to Heat Transfer (McGraw-Hill, New York, 1958), p. 169.

International Critical Tables (McGraw-Hill, New York, 1929), Vol. 5, p. 105.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959).

Amersil, Inc., Catalog No. Em-9227.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for calorimetric measurement with sample inside laser cavity.

Fig. 2
Fig. 2

Calibration of intracavity power.

Fig. 3
Fig. 3

Sample support mechanism.

Fig. 4
Fig. 4

Cooling curve for fused silica (Suprasil W1).

Fig. 5
Fig. 5

Temperature rise of a typical sample as a function of laser intracavity power.

Fig. 6
Fig. 6

Optical configuration with sample inside laser cavity.

Tables (1)

Tables Icon

Table I Optical Absorption Loss

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

P P 0 exp ( - α tot L ) .
α tot = α abs + α scat .
R 1 = P 0 - P - P scat ,
R 1 = α abs L P 0 .
R 2 = h S Δ T ,
α abs = h S Δ T 0 / L P 0 ,
h S Δ T = - ( d / d t ) ( C V Δ T ) ,
Δ T = Δ T 0 exp [ ( - h S / C V ) t ] ,
τ = C V / h S .
α abs = C V Δ T 0 / τ L P 0 .
α abs = C A Δ T 0 / τ P 0 .
R = [ ( n - 1 ) / ( n + 1 ) ] 2 ,
P IN / P OUT = ( 1 + R ) / ( 1 - R ) = 1 2 [ n + ( 1 / n ) ] .
h conv = 0.25 ( Δ T / D ) 1 / 4 Btu / h - sqft - F 0 ,
h rad = 4 σ T av 3 ,
2 T + [ Q ( r ) / k ] = 0 ,
T 2 = ( Q / 4 k ) [ ω 2 - r 2 + ( 2 ω 2 k / h a ) + 2 ω 2 ln a / ω ) ] + T 0 ,
T 1 = ( ω 2 Q / 2 k ) [ ( k / h a ) + ln a / r ) ] + T 0 )
Q ( r ) = ( P 0 α abs / π ω 2 ) , 0 r ω .
( T 2 r = 0 - T 1 r = a ) / Δ T 0 = ( a / 2 ) ( h / k ) [ 1 + 2 ln ( a / ω ) ] .
( T 2 r = 0 - T 1 r = a ) / Δ T 0 2.4 %
A 2 = r A 1 + t B 2 ,
B 2 = ( 1 / t ) ( A 2 - r A 1 ) .
B 2 B 2 * = ( 1 / t 2 ) [ A 2 A 2 * + r 2 A 1 A 1 * - r ( A 1 A 2 * + A 2 A 1 * ) ] .
A 1 = 1 , A 2 = 1 e i ϕ ,
B 2 B 2 * = ( 1 / t 2 ) [ 1 + r 2 - 2 r cos ϕ ] .
B 2 B 2 * ( max ) = ( 1 / t 2 ) ( 1 + r 2 + 2 r ) = ( 1 + r ) / ( 1 - r ) = n ,
B 2 B 2 * ( min ) = 1 / t 2 ( 1 + r 2 - 2 r ) = ( 1 - r ) / ( 1 + r ) = 1 / n .
B 2 B 2 * = 1 / t 2 ( 1 + r 2 ) = 1 2 [ n + ( 1 / n ) ]
h c = 4.6 × 10 3 erg / cm 2 - sec ° C .
F = ( 2 B / D ) / [ ln ( 1 + 2 B / D ) ] ,
B / D = 2.27 [ μ / ρ ( β g D 3 Δ T ) 1 / 2 ) 0.50 ,
h r = 5.1 × 10 3 erg / cm 2 - sec ° C .
h r + h c = 16.9 × 10 3 erg / cm 2 - sec ° C .
τ = 75 sec , C = 1.6 × 10 7 erg / cm 2 , V / S 0.064 cm
h r + h c = 13.7 × 10 3 erg / cm 2 sec ° C ,

Metrics