Abstract

The active cavity radiometer (ACR) is a pyrheliometer that accurately defines the absolute radiation scale. The physics of the pyrheliometric method and the ACR approach to this method are presented in detail. A mathematical abstraction of the method is generated through a quasi-equilibrium analysis of the power balance of the ACR’s cavity detector. An error analysis is carried out on the quasi-equilibrium equation to determine the uncertainties of ACR measurements relative to the absolute radiation scale. The uncertainty of ACR measurements as a function of irradiance level is presented in graphical form.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Haley, “A Rapid Response Blackbody Cavity Radiometer,” JPL New Technology Rept. 30-521 (Jet Propulsion Laboratory, Pasadena, Calif., 1964).
  2. J. A. Plamondon, J. M. Kendall, “A Cavity-Type, Absolute Total Radiation Radiometer,” Space Programs Summary 37-35 (Jet Propulsion Laboratory, Pasadena, Calif., 1965), Vol. 4.
  3. R. C. Willson, “Radiometer Comparison Tests,” JPL Tech. Memorandum 33-371 (Jet Propulsion Laboratory, Pasadena, Calif., 1967).
  4. J. M. Kendall, “The J. P. L. Standard Total Radiation Absolute Radiometer,” Tech. Rept. 32-1263 (Jet Propulsion Laboratory, Pasadena, Calif., 1968).
  5. R. C. Willson, “Experimental and Theoretical Comparison of the JPL Active Cavity Radiometric Scale and the International Phyheliometric Scale,” Tech. Rept. 32-1365 (Jet Propulsion Laboratory, Pasadena, Calif., 1969).
  6. J. M. Kendall, “Primary Absolute Cavity Radiometer,” Tech. Rept. 32-1396 (Jet Propulsion Laboratory, Pasadena, Calif., 1969).
  7. J. M. Kendall, C. M. Berdahl, Appl. Opt. 9, 1082 (1970).
    [CrossRef] [PubMed]
  8. C. L. Sydnor, “A Numerical Study of Cavity Radiometer Emissivities,” Tech. Rept. 32-1463 (Jet Propulsion Laboratory, Pasadena, Calif., 1970).
  9. R. C. Willson, J. Geophys. Res. 76, 4325 (1971).
    [CrossRef]
  10. R. C. Willson, “New Radiometric Techniques,” presented at the International Solar Energy Society Meeting, Goddard Space Flight Center, Greenbelt, Md. (May, 1971).
  11. R. C. Willson, Nature, 239, 208 (1972).
    [CrossRef]
  12. R. C. Willson, Solar Energy, 14, 203 (1973).
    [CrossRef]

1973 (1)

R. C. Willson, Solar Energy, 14, 203 (1973).
[CrossRef]

1972 (1)

R. C. Willson, Nature, 239, 208 (1972).
[CrossRef]

1971 (1)

R. C. Willson, J. Geophys. Res. 76, 4325 (1971).
[CrossRef]

1970 (1)

Berdahl, C. M.

Haley, F.

F. Haley, “A Rapid Response Blackbody Cavity Radiometer,” JPL New Technology Rept. 30-521 (Jet Propulsion Laboratory, Pasadena, Calif., 1964).

Kendall, J. M.

J. M. Kendall, C. M. Berdahl, Appl. Opt. 9, 1082 (1970).
[CrossRef] [PubMed]

J. M. Kendall, “The J. P. L. Standard Total Radiation Absolute Radiometer,” Tech. Rept. 32-1263 (Jet Propulsion Laboratory, Pasadena, Calif., 1968).

J. A. Plamondon, J. M. Kendall, “A Cavity-Type, Absolute Total Radiation Radiometer,” Space Programs Summary 37-35 (Jet Propulsion Laboratory, Pasadena, Calif., 1965), Vol. 4.

J. M. Kendall, “Primary Absolute Cavity Radiometer,” Tech. Rept. 32-1396 (Jet Propulsion Laboratory, Pasadena, Calif., 1969).

Plamondon, J. A.

J. A. Plamondon, J. M. Kendall, “A Cavity-Type, Absolute Total Radiation Radiometer,” Space Programs Summary 37-35 (Jet Propulsion Laboratory, Pasadena, Calif., 1965), Vol. 4.

Sydnor, C. L.

C. L. Sydnor, “A Numerical Study of Cavity Radiometer Emissivities,” Tech. Rept. 32-1463 (Jet Propulsion Laboratory, Pasadena, Calif., 1970).

Willson, R. C.

R. C. Willson, Solar Energy, 14, 203 (1973).
[CrossRef]

R. C. Willson, Nature, 239, 208 (1972).
[CrossRef]

R. C. Willson, J. Geophys. Res. 76, 4325 (1971).
[CrossRef]

R. C. Willson, “New Radiometric Techniques,” presented at the International Solar Energy Society Meeting, Goddard Space Flight Center, Greenbelt, Md. (May, 1971).

R. C. Willson, “Radiometer Comparison Tests,” JPL Tech. Memorandum 33-371 (Jet Propulsion Laboratory, Pasadena, Calif., 1967).

R. C. Willson, “Experimental and Theoretical Comparison of the JPL Active Cavity Radiometric Scale and the International Phyheliometric Scale,” Tech. Rept. 32-1365 (Jet Propulsion Laboratory, Pasadena, Calif., 1969).

Appl. Opt. (1)

J. Geophys. Res. (1)

R. C. Willson, J. Geophys. Res. 76, 4325 (1971).
[CrossRef]

Nature (1)

R. C. Willson, Nature, 239, 208 (1972).
[CrossRef]

Solar Energy (1)

R. C. Willson, Solar Energy, 14, 203 (1973).
[CrossRef]

Other (8)

R. C. Willson, “New Radiometric Techniques,” presented at the International Solar Energy Society Meeting, Goddard Space Flight Center, Greenbelt, Md. (May, 1971).

C. L. Sydnor, “A Numerical Study of Cavity Radiometer Emissivities,” Tech. Rept. 32-1463 (Jet Propulsion Laboratory, Pasadena, Calif., 1970).

F. Haley, “A Rapid Response Blackbody Cavity Radiometer,” JPL New Technology Rept. 30-521 (Jet Propulsion Laboratory, Pasadena, Calif., 1964).

J. A. Plamondon, J. M. Kendall, “A Cavity-Type, Absolute Total Radiation Radiometer,” Space Programs Summary 37-35 (Jet Propulsion Laboratory, Pasadena, Calif., 1965), Vol. 4.

R. C. Willson, “Radiometer Comparison Tests,” JPL Tech. Memorandum 33-371 (Jet Propulsion Laboratory, Pasadena, Calif., 1967).

J. M. Kendall, “The J. P. L. Standard Total Radiation Absolute Radiometer,” Tech. Rept. 32-1263 (Jet Propulsion Laboratory, Pasadena, Calif., 1968).

R. C. Willson, “Experimental and Theoretical Comparison of the JPL Active Cavity Radiometric Scale and the International Phyheliometric Scale,” Tech. Rept. 32-1365 (Jet Propulsion Laboratory, Pasadena, Calif., 1969).

J. M. Kendall, “Primary Absolute Cavity Radiometer,” Tech. Rept. 32-1396 (Jet Propulsion Laboratory, Pasadena, Calif., 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

JPL active cavity radiometer type III.

Fig. 2
Fig. 2

Schematic drawing of the active cavity radiometer electronics.

Fig. 3
Fig. 3

The active cavity radiometer (ACR) system for engineering measurements in the space environment simulators of NASA’s Goddard Spaceflight Center. (1) ACR control unit; (2) ACR with shade in place; (3) chopping mechanism; (4) external view limiting tube; (5) 10° external view limiting attachment; (6) cap for view limiting tube; (7) 5° view limiter; (8) combination 30° view limiter and shade.

Fig. 4
Fig. 4

Uncertainty of the low-irradiance active cavity radiometer as a function of irradiance.

Fig. 5
Fig. 5

Uncertainty of the one-solar-constant active cavity radiometer (ACR 1) as a function of irradiance.

Fig. 6
Fig. 6

Uncertainty of the ten-solar-constant active cavity radiometer (ACR 10) as a function of irradiance.

Fig. 7
Fig. 7

Uncertainty of the twenty-solar-constant active cavity radiometer (ACR 20) as a function of irradiance.

Fig. 8
Fig. 8

Uncertainty of the thirty-solar-constant active cavity radiometer (ACR 30) as a function of irradiance.

Tables (2)

Tables Icon

Table I Parameters and Their Associated Indeterminacies That are Common to All Types of ACR

Tables Icon

Table II Parameters and Their Associated Indeterminacies That Vary with the Type of ACR

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

H = K ( P e r - P e o ) ,
Σ P i n = P e r + j P i r j ,
Σ P o u t = j ( P i r c j + P a c j ) + P c + T ˚ C + P c l .
Σ P i n = P e o + j P i r j + A c H ( α c + ρ ρ c ) ,
Σ P o u t = j ( P i r c j + P a c j ) + P c + T ˚ C + P c l ,
P e r = j ( P i r c j + P a c j - P i r j ) + P c + T ˚ C + P c l ,
P e o = j ( P i r c j + P a c j - P i r j ) + P c + T ˚ C + P c l + H A c [ ( α c + ρ ρ c ) ] .
H = [ A c ( α c + ρ ρ c ) ] - 1 { ( P e r - P e o ) - j [ ( P i r c j - P i r c j ) + ( P a c j - P a c j ) - ( P i r j - P i r j ) ] - [ ( P c - P c ) + ( T ˚ - T ˚ ) C + ( P c l - P c l ) ] } .
j ( P i r c j - P i r c j ) = j σ Ω j π [ c j - A c j ( T c j 4 - T c j 4 ) ] , j ( P i r j - P i r j ) = j α j σ Ω j π [ j A c j ( T j 4 - T j 4 ) ] ,
j ( P a c j - P a c j ) = j K a j [ ( T c - T j ) - ( T c - T j ) ] ,
( P c - P c ) = K t i [ ( T c - T h s ) - ( T c - T h s ) ] ,
( P c l - P c l ) = K l [ ( T c - T c b ) - ( T c - T c b ) ] ,
H = [ A c ( α c + ρ ρ c ) ] - 1 [ P e r - P e o ] .
U ( H ) = ± { [ H ξ i S ( ξ i ) ] 2 } 1 / 2 ,
H = [ A c ( α c + ρ ρ c ) ] - 1 { ( V r 2 - V 0 2 R ) + j = 1 4 4 σ Ω j π [ c j A c j T c 3 δ T c - A c j T j 3 δ T j ] + j = 1 4 K a j ( δ T c - δ T j ) + K t r ( δ T c - δ T h s ) + K c ( δ T c - δ T c b ) + C δ T ˚ c .

Metrics