Abstract

An optical instrument for use in the study of wind induced ripple on the water surface of a wind and wave tank is described. The instrument measures the tip angle of the projected surface normal vector in the down-wind and the cross-wind vertical planes independent of water height, thereby allowing studies of wind induced ripple on lower frequency, mechanical waves. Underwater hardware is reduced to one mirror. Each projected angle appears on a separate output channel as an analog voltage. An in situ calibration technique used prior to recording calibrates the over-all system. Sample output records are shown, and system performance is discussed.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Valenzula, M. B. Lang, J. C. Daley, J. Marine Res. 29, 69 (1971).
  2. J. W. Wright, W. C. Kellar, Phys. Fluids 14, 466 (1971).
    [CrossRef]
  3. J. P. Hollinger, IEEE Trans. Geo. Sci. GE-9, 165 (1971).
    [CrossRef]
  4. C. S. Cox, W. H. Munk, J. Opt. Soc. Am. 44, 838 (1954).
    [CrossRef]
  5. O. H. Shemdin, Dept. of Coastal and Oceanographic Engineering Tech. Report 3 (University of Florida, Gainesville, 1969).
  6. C. S. Cox, J. Marine Res. 16, 199 (1958).
  7. J. Wu, J. Opt. Soc. Am. 61, 852 (1971).
    [CrossRef]
  8. C. E. Prettyman, M. D. Cermak, IEEE Trans. Geo. Sci. GE-7, 235 (1969).
    [CrossRef]
  9. R. D. Hudson, Infrared System Engineering (Wiley, Now York, 1969).

1971 (4)

G. R. Valenzula, M. B. Lang, J. C. Daley, J. Marine Res. 29, 69 (1971).

J. W. Wright, W. C. Kellar, Phys. Fluids 14, 466 (1971).
[CrossRef]

J. P. Hollinger, IEEE Trans. Geo. Sci. GE-9, 165 (1971).
[CrossRef]

J. Wu, J. Opt. Soc. Am. 61, 852 (1971).
[CrossRef]

1969 (1)

C. E. Prettyman, M. D. Cermak, IEEE Trans. Geo. Sci. GE-7, 235 (1969).
[CrossRef]

1958 (1)

C. S. Cox, J. Marine Res. 16, 199 (1958).

1954 (1)

Cermak, M. D.

C. E. Prettyman, M. D. Cermak, IEEE Trans. Geo. Sci. GE-7, 235 (1969).
[CrossRef]

Cox, C. S.

C. S. Cox, J. Marine Res. 16, 199 (1958).

C. S. Cox, W. H. Munk, J. Opt. Soc. Am. 44, 838 (1954).
[CrossRef]

Daley, J. C.

G. R. Valenzula, M. B. Lang, J. C. Daley, J. Marine Res. 29, 69 (1971).

Hollinger, J. P.

J. P. Hollinger, IEEE Trans. Geo. Sci. GE-9, 165 (1971).
[CrossRef]

Hudson, R. D.

R. D. Hudson, Infrared System Engineering (Wiley, Now York, 1969).

Kellar, W. C.

J. W. Wright, W. C. Kellar, Phys. Fluids 14, 466 (1971).
[CrossRef]

Lang, M. B.

G. R. Valenzula, M. B. Lang, J. C. Daley, J. Marine Res. 29, 69 (1971).

Munk, W. H.

Prettyman, C. E.

C. E. Prettyman, M. D. Cermak, IEEE Trans. Geo. Sci. GE-7, 235 (1969).
[CrossRef]

Shemdin, O. H.

O. H. Shemdin, Dept. of Coastal and Oceanographic Engineering Tech. Report 3 (University of Florida, Gainesville, 1969).

Valenzula, G. R.

G. R. Valenzula, M. B. Lang, J. C. Daley, J. Marine Res. 29, 69 (1971).

Wright, J. W.

J. W. Wright, W. C. Kellar, Phys. Fluids 14, 466 (1971).
[CrossRef]

Wu, J.

IEEE Trans. Geo. Sci. (2)

J. P. Hollinger, IEEE Trans. Geo. Sci. GE-9, 165 (1971).
[CrossRef]

C. E. Prettyman, M. D. Cermak, IEEE Trans. Geo. Sci. GE-7, 235 (1969).
[CrossRef]

J. Marine Res. (2)

G. R. Valenzula, M. B. Lang, J. C. Daley, J. Marine Res. 29, 69 (1971).

C. S. Cox, J. Marine Res. 16, 199 (1958).

J. Opt. Soc. Am. (2)

Phys. Fluids (1)

J. W. Wright, W. C. Kellar, Phys. Fluids 14, 466 (1971).
[CrossRef]

Other (2)

O. H. Shemdin, Dept. of Coastal and Oceanographic Engineering Tech. Report 3 (University of Florida, Gainesville, 1969).

R. D. Hudson, Infrared System Engineering (Wiley, Now York, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic cross-section of wave tank instrumentation. Output from laser (a) passes through wave tank glass (b). Beam is reflected vertically upward toward instrument (d) by underwater reflector (c).

Fig. 2
Fig. 2

Measurement of radial distance rfp in the focal plane of a lens yields angle ϕR independent of Δh.

Fig. 3
Fig. 3

Schematic representation of components internal to instrument.

Fig. 4
Fig. 4

Instrument with side cover removed. One PM tube assembly is removed from housing.

Fig. 5
Fig. 5

Wave tank installation.

Fig. 6
Fig. 6

Results of calibration.

Fig. 7
Fig. 7

Linearized calibration.

Fig. 8
Fig. 8

Sample data record. Fetch increases toward the left. Positive down-wind slopes tip downwind.

Fig. 9
Fig. 9

Sample data record of wind blown surface.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ϕ R = sin - 1 [ ( n w / n a ) sin ϕ N ] - ϕ N ,
θ R = θ N + 180° ,
r f p = f l tan ϕ R
and likewise ,             x = r f p cos θ f p = r f p cos θ R y = r f p sin θ R .
and x = f l tan ϕ R cos θ R y = f l tan ϕ R sin θ R .
and             tan ϕ R x = tan ϕ R cos θ R tan ϕ R y = tan ϕ R sin θ R .
and             x = f l tan ϕ R x y = f l tan ϕ R y ,
tan ϕ R = ( tan 2 ϕ R x + tan 2 ϕ R y ) 1 / 2
tan θ R = tan ϕ R y / tan ϕ R x tan θ N ,
ϕ R = ( n w / n a ) ϕ N - ϕ N = 0.333 ϕ N .
x = f l tan ϕ R x = K ϕ R x ,
y = K ϕ R y ,
K = 2 π f l / 360.

Metrics