Abstract

Mie scattering intensities as a function of the size parameter are measured by use of a tunable dye laser and monodispersed spherical particles. The experimental results are compared with the Mie single scattering theory; a discrepancy in the exact position of the maxima and minima was detected. Agreement between experiment and theory was improved by applying a correction to the manufacturer’s index of refraction function for the particles.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Mie, Ann. Physik 25, 377 (1908).
    [CrossRef]
  2. H. C. van der Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  3. A. Penndorf, J. Opt. Soc. Am. 52, 4 (1962).
  4. D. Diermendjian, Electromagnetic Scattering of Spherical Polydispersions (American Elsevier, New York, 1969).
  5. G. C. Sherman, F. S. Harris, F. L. Morse, Appl. Opt. 7, 421 (1968).
    [CrossRef] [PubMed]
  6. H. H. Blau, D. J. McCleese, D. Watson, Appl. Opt. 9, 2522 (1970).
    [CrossRef] [PubMed]
  7. A. I. Carswell, Appl. Opt. 11, 1611 (1972).
    [CrossRef] [PubMed]
  8. A. Cohen, Tellus 21, 736 (1969).
    [CrossRef]

1972 (1)

1970 (1)

1969 (1)

A. Cohen, Tellus 21, 736 (1969).
[CrossRef]

1968 (1)

1962 (1)

A. Penndorf, J. Opt. Soc. Am. 52, 4 (1962).

1908 (1)

G. Mie, Ann. Physik 25, 377 (1908).
[CrossRef]

Blau, H. H.

Carswell, A. I.

Cohen, A.

A. Cohen, Tellus 21, 736 (1969).
[CrossRef]

Diermendjian, D.

D. Diermendjian, Electromagnetic Scattering of Spherical Polydispersions (American Elsevier, New York, 1969).

Harris, F. S.

McCleese, D. J.

Mie, G.

G. Mie, Ann. Physik 25, 377 (1908).
[CrossRef]

Morse, F. L.

Penndorf, A.

A. Penndorf, J. Opt. Soc. Am. 52, 4 (1962).

Sherman, G. C.

van der Hulst, H. C.

H. C. van der Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Watson, D.

Ann. Physik (1)

G. Mie, Ann. Physik 25, 377 (1908).
[CrossRef]

Appl. Opt. (3)

J. Opt. Soc. Am. (1)

A. Penndorf, J. Opt. Soc. Am. 52, 4 (1962).

Tellus (1)

A. Cohen, Tellus 21, 736 (1969).
[CrossRef]

Other (2)

D. Diermendjian, Electromagnetic Scattering of Spherical Polydispersions (American Elsevier, New York, 1969).

H. C. van der Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental arrangement.

Fig. 2
Fig. 2

Measured 90° scattering intensities as a function of wavelength for 438 nm ≤ λ ≤ 471 nm. The solid curves are examples of a series of repeating curves for each particle size: (a) 1.305 μm; (b) 2.051 μm; (c) 2.956 μm. The dashed curves are reference curves obtained by replacing the monodispersed spheres with a white, diffuse target.

Fig. 3
Fig. 3

Theoretical 90° scattering intensities for spherical particles having a refractive index of n = 1.81 − 0.0i. (a) 0.0 ≤ 2 πr/λ ≤ 45.0. (b) r = 1.305 μm and 438 nm ≤ λ ≤ 471 nm (17.4 ≤ 2 πr/λ ≤ 18.7). (c) r = 2.051 μm and 438 nm ≤ λ ≤ 471 nm (27.3 ≤ 27πr/λ ≤ 29.4). (d) r = 2.956 μm and 438 nm ≤ λ ≤ 471 nm (39.4 ≤ 2πr/λ ≤ 42.4).

Fig. 4
Fig. 4

The log of the scattering intensities of the component normal to the scattering plane as a function of wavelength; the scattering angle θ = 90° +, m = 1.33; ○, m = m (λ). (a) R (= radius of scattering sphere) = 4.5 μ; (b) R = 2.5 μ.

Fig. 5
Fig. 5

Theoretical 90° scattering intensities for spherical particles having a refractive index of n = 1.16 + (λ − 440) × 10−4/1.5. (a) r = 1.305 μm; (b) r = 2.051 μm; (c) r = 2.956 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

m ( λ ) = 1.161 + ( λ - 440 ) × 10 - 4 / 1.5
m ( λ = 467 ) 1.24

Metrics