Abstract

The explosive vaporization of individual water droplets (5 μm to 25 μm radius) by a 10.6-μm laser pulse has been observed with a high speed schlieren photography system. The hot vapor and the shock wave produced by the explosive vaporization can be clearly seen in the schlieren photographs. The expansion rate of the heated air mass has been measured. Factors affecting the shape of the volume of heated air are discussed, and the energy balance of the process is considered.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Mullaney, W. H. Christiansen, D. A. Russell, Appl. Phys. Lett. 13, 145 (1971).
    [CrossRef]
  2. S. L. Glickler, Appl. Opt. 10, 644 (1971).
    [CrossRef] [PubMed]
  3. P. Kafalas, A. P. Ferdinand, Appl. Opt. 12, 29 (1913).
    [CrossRef]
  4. J. W. Beams, in Physical Measurements in Gas Dynamics and Combustion, R. W. Ladenburg et al., Eds. (Princeton U. P.Princeton, N.J., 1954).
  5. I. L. Zelmanovich, K. S. Shifrin, Tables of Light Scattering (Hydrometeorological Press, Leningrad, 1968), Vol. 3, p. 345.
  6. G. F. Kinney, Explosive Shocks in Air (Macmillan, New York, 1962), p. 95.

1971 (2)

G. J. Mullaney, W. H. Christiansen, D. A. Russell, Appl. Phys. Lett. 13, 145 (1971).
[CrossRef]

S. L. Glickler, Appl. Opt. 10, 644 (1971).
[CrossRef] [PubMed]

1913 (1)

Beams, J. W.

J. W. Beams, in Physical Measurements in Gas Dynamics and Combustion, R. W. Ladenburg et al., Eds. (Princeton U. P.Princeton, N.J., 1954).

Christiansen, W. H.

G. J. Mullaney, W. H. Christiansen, D. A. Russell, Appl. Phys. Lett. 13, 145 (1971).
[CrossRef]

Ferdinand, A. P.

Glickler, S. L.

Kafalas, P.

Kinney, G. F.

G. F. Kinney, Explosive Shocks in Air (Macmillan, New York, 1962), p. 95.

Mullaney, G. J.

G. J. Mullaney, W. H. Christiansen, D. A. Russell, Appl. Phys. Lett. 13, 145 (1971).
[CrossRef]

Russell, D. A.

G. J. Mullaney, W. H. Christiansen, D. A. Russell, Appl. Phys. Lett. 13, 145 (1971).
[CrossRef]

Shifrin, K. S.

I. L. Zelmanovich, K. S. Shifrin, Tables of Light Scattering (Hydrometeorological Press, Leningrad, 1968), Vol. 3, p. 345.

Zelmanovich, I. L.

I. L. Zelmanovich, K. S. Shifrin, Tables of Light Scattering (Hydrometeorological Press, Leningrad, 1968), Vol. 3, p. 345.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

G. J. Mullaney, W. H. Christiansen, D. A. Russell, Appl. Phys. Lett. 13, 145 (1971).
[CrossRef]

Other (3)

J. W. Beams, in Physical Measurements in Gas Dynamics and Combustion, R. W. Ladenburg et al., Eds. (Princeton U. P.Princeton, N.J., 1954).

I. L. Zelmanovich, K. S. Shifrin, Tables of Light Scattering (Hydrometeorological Press, Leningrad, 1968), Vol. 3, p. 345.

G. F. Kinney, Explosive Shocks in Air (Macmillan, New York, 1962), p. 95.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Diagram of the experiment (top view).

Fig. 2
Fig. 2

Schlieren photographs of four exploding water droplets. The radius of each droplet is shown at the left and the elapsed time since the 10.6-μm laser pulse is shown at the right. Laser pulse direction: left to right.

Fig. 3
Fig. 3

Schlieren photographs of four exploding water droplets, showing the effect of droplet size. Laser pulse direction: left to right.

Fig. 4
Fig. 4

Schlieren photograph of a large (~35 μm radius) exploding water droplet 6.7 μsec after the 10.6-μm laser pulse. Laser pulse direction: left to right.

Fig. 5
Fig. 5

The energy absorbed by a water droplet for incident 10.6-μm laser pulses of the indicated energy density. The energy of vaporization Evap is also shown for comparison.

Fig. 6
Fig. 6

The radius of the shock wave as a function of time.

Fig. 7
Fig. 7

Scaled time tx (Ref. 6) as a function of (arrival time of the shock)/(shock radius).

Metrics