Abstract

The thickness uniformity that can be obtained near the source axis in evaporation systems having long source-to-substrate distances (~50 cm) and small area sources has been investigated using multiple beam interferometry. Silver films were evaporated from resistance-heated dimple boats in standard vacuum and ultrahigh vacuum onto stationary and rotating substrates 3.86 cm in diameter symmetrically placed about the source axis. Thickness variations in the films were measured across substrate diameters, and the average film thicknesses were compared. Similar data were also obtained for aluminum, aluminum oxide, and germanium films. Random thickness variations have been found on all the films, which are much larger than the uniform thickness gradations predicted by the geometric theory. These variations can be minimized but not eliminated by planetary rotation of the substrates.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. H. Behrndt, in Physics of Thin Films, G. Hass, R. E. Thun, Eds. (Academic Press, New York, 1966), Vol. 3, pp. 1–59.
  2. K. H. Behrndt, in 1963 Transactions of the 10th National Vacuum Symposium of the AVS (Macmillan Co., New York, 1963), pp. 379–384.
  3. L. Holland, W. Steckelmacher, Vacuum 2, 346 (1952).
    [CrossRef]
  4. L. Holland, N. J. Newman, Rev. Sci. Instrum. 23, 642 (1952).
    [CrossRef]
  5. G. Koppelmann, Ann. Physik 5, 397 (1960).
    [CrossRef]
  6. D. Keay, P. H. Lissberger, Appl. Opt. 6, 727 (1967).
    [CrossRef] [PubMed]
  7. H. A. Macleod, Thin-Film Optical Filters (American Elsevier, New York, 1969), pp. 222–228. B. S. Ramprasad, T. S. Radha, M. Ramakrishna Rao, J. Vac. Sci. Technol. 9, 1227 (1972).
    [CrossRef]
  8. Sloan Technology Corporation Handbook of Thin Film Materials (Sloan Materials Division, El Segundo, Calif., 1970), pp. 23–135.
  9. L. Holland, Vacuum Deposition of Thin Films (Wiley, New York, 1958), p. 5.
  10. H. E. Bennett, J. M. Bennett, in Physics of, Thin Films, G. Hass, R. E. Thun, Eds. (Academic Press, New York, 1967), Vol. 4, pp. 31–37.
  11. W. F. Koehler, E. J. Ashley, Appl. Opt. 9, 2801 (1970).
    [PubMed]
  12. J. M. Bennett, E. J. Ashley, Appl. Opt. 4, 221 (1965).
    [CrossRef]

1970

1967

1965

1960

G. Koppelmann, Ann. Physik 5, 397 (1960).
[CrossRef]

1952

L. Holland, W. Steckelmacher, Vacuum 2, 346 (1952).
[CrossRef]

L. Holland, N. J. Newman, Rev. Sci. Instrum. 23, 642 (1952).
[CrossRef]

Ashley, E. J.

Behrndt, K. H.

K. H. Behrndt, in Physics of Thin Films, G. Hass, R. E. Thun, Eds. (Academic Press, New York, 1966), Vol. 3, pp. 1–59.

K. H. Behrndt, in 1963 Transactions of the 10th National Vacuum Symposium of the AVS (Macmillan Co., New York, 1963), pp. 379–384.

Bennett, H. E.

H. E. Bennett, J. M. Bennett, in Physics of, Thin Films, G. Hass, R. E. Thun, Eds. (Academic Press, New York, 1967), Vol. 4, pp. 31–37.

Bennett, J. M.

J. M. Bennett, E. J. Ashley, Appl. Opt. 4, 221 (1965).
[CrossRef]

H. E. Bennett, J. M. Bennett, in Physics of, Thin Films, G. Hass, R. E. Thun, Eds. (Academic Press, New York, 1967), Vol. 4, pp. 31–37.

Holland, L.

L. Holland, W. Steckelmacher, Vacuum 2, 346 (1952).
[CrossRef]

L. Holland, N. J. Newman, Rev. Sci. Instrum. 23, 642 (1952).
[CrossRef]

L. Holland, Vacuum Deposition of Thin Films (Wiley, New York, 1958), p. 5.

Keay, D.

Koehler, W. F.

Koppelmann, G.

G. Koppelmann, Ann. Physik 5, 397 (1960).
[CrossRef]

Lissberger, P. H.

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (American Elsevier, New York, 1969), pp. 222–228. B. S. Ramprasad, T. S. Radha, M. Ramakrishna Rao, J. Vac. Sci. Technol. 9, 1227 (1972).
[CrossRef]

Newman, N. J.

L. Holland, N. J. Newman, Rev. Sci. Instrum. 23, 642 (1952).
[CrossRef]

Steckelmacher, W.

L. Holland, W. Steckelmacher, Vacuum 2, 346 (1952).
[CrossRef]

Ann. Physik

G. Koppelmann, Ann. Physik 5, 397 (1960).
[CrossRef]

Appl. Opt.

Rev. Sci. Instrum.

L. Holland, N. J. Newman, Rev. Sci. Instrum. 23, 642 (1952).
[CrossRef]

Vacuum

L. Holland, W. Steckelmacher, Vacuum 2, 346 (1952).
[CrossRef]

Other

K. H. Behrndt, in Physics of Thin Films, G. Hass, R. E. Thun, Eds. (Academic Press, New York, 1966), Vol. 3, pp. 1–59.

K. H. Behrndt, in 1963 Transactions of the 10th National Vacuum Symposium of the AVS (Macmillan Co., New York, 1963), pp. 379–384.

H. A. Macleod, Thin-Film Optical Filters (American Elsevier, New York, 1969), pp. 222–228. B. S. Ramprasad, T. S. Radha, M. Ramakrishna Rao, J. Vac. Sci. Technol. 9, 1227 (1972).
[CrossRef]

Sloan Technology Corporation Handbook of Thin Film Materials (Sloan Materials Division, El Segundo, Calif., 1970), pp. 23–135.

L. Holland, Vacuum Deposition of Thin Films (Wiley, New York, 1958), p. 5.

H. E. Bennett, J. M. Bennett, in Physics of, Thin Films, G. Hass, R. E. Thun, Eds. (Academic Press, New York, 1967), Vol. 4, pp. 31–37.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Photograph of the standard vacuum system showing position of source and rotating turntable.

Fig. 2
Fig. 2

Photograph and schematic diagram of turntable in the ultrahigh vacuum system.

Fig. 3
Fig. 3

Variation in thickness at discrete points across 3.86-cm-diameter substrates for a series of silver films. (a) Substrates undergoing planetary rotation during evaporation, and (b) stationary substrates. Standard vacuum.

Fig. 4
Fig. 4

Same as Fig. 3 except that films were prepared in ultrahigh vacuum.

Fig. 5
Fig. 5

Thickness deviations for a series of silver, aluminum, and aluminum oxide films prepared in standard vacuum. Open data points are rotating samples, and solid points are stationary samples. Short-and long-dashed lines are theoretical thickness variations for rotating and stationary samples, respectively, and solid curve is a least-squares fit of the data points.

Fig. 6
Fig. 6

Thickness deviations for a series of silver, alumium, and germanium films prepared in ultrahigh vacuum Data points and lines have the same meanings as in Fig. 5.

Fig. 7
Fig. 7

Variation in thickness of a silicon film evaporated with an electron beam gun onto a 23-cm-long rectangular substrate. Discrete measurements were taken at approximately 2.54-cm intervals. The solid and long-dashed curves were calculated assuming a point source and small-area source, respectively.

Metrics