Abstract

The fabrication of complex integrated optical circuits using thin films will require dielectric patterns of high resolution and edge smoothness. This paper describes an electron-beam technique that has been used to form a curved thin-film light guide and a directional coupler, and is applicable to filters and other more complex components.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Miller, Bell Syst. Tech. J. 48, 2059 (1969).
  2. D. Marcuse, Bell Syst. Tech. J. 48, 3187 (1969).
  3. J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).
  4. I. Haller, M. Hatzakis, R. Srinivasan, IBM J. Res. Dev. 12, 251 (1968).
    [CrossRef]
  5. J. E. Goell, “Election-Resist Fabrication of Integrated Optical Circuits,” in Digest of OSA Topical Meeting in Integrated Optics-Guided Waves, Materials, Devices, Las Vegas, 7–10 February 1972 (Optical Society of America, Washington D.C., 1972), pp MB8-1 to MB8-4.
  6. T. Li, “Passive Integrated Optical Circuits,” in Digest of the Topical Meeting on Integrated Optics-Guide Waves, Materials, Devices, Las Vegas, 7–10 February, 1972 (Optical Society of America, Washington, D.C., 1972).
  7. J. E. Goell, Bell Syst. Tech. J. 48, 2133 (1969).
  8. E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).
  9. E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2103 (1969).
  10. J. L. Vossen, J. Vac. Sci. Tech. 8, 512 (1971).
    [CrossRef]
  11. W. M. Muska, to be published.
  12. Barium Silicate Films for Integrated Optical Circuits, MM 72-1363-8.
  13. K. Amboss, E. D. Wolf, “Double-Deflection Aberrations in a Scanning Election Microscope,” in Symposium on Electron, Ion, and Laser Beam Tech., Boulder, Colo., 1971.
  14. P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
    [CrossRef]

1971 (1)

J. L. Vossen, J. Vac. Sci. Tech. 8, 512 (1971).
[CrossRef]

1969 (7)

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

J. E. Goell, Bell Syst. Tech. J. 48, 2133 (1969).

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2103 (1969).

S. E. Miller, Bell Syst. Tech. J. 48, 2059 (1969).

D. Marcuse, Bell Syst. Tech. J. 48, 3187 (1969).

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

1968 (1)

I. Haller, M. Hatzakis, R. Srinivasan, IBM J. Res. Dev. 12, 251 (1968).
[CrossRef]

Amboss, K.

K. Amboss, E. D. Wolf, “Double-Deflection Aberrations in a Scanning Election Microscope,” in Symposium on Electron, Ion, and Laser Beam Tech., Boulder, Colo., 1971.

Goell, J. E.

J. E. Goell, Bell Syst. Tech. J. 48, 2133 (1969).

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

J. E. Goell, “Election-Resist Fabrication of Integrated Optical Circuits,” in Digest of OSA Topical Meeting in Integrated Optics-Guided Waves, Materials, Devices, Las Vegas, 7–10 February 1972 (Optical Society of America, Washington D.C., 1972), pp MB8-1 to MB8-4.

Haller, I.

I. Haller, M. Hatzakis, R. Srinivasan, IBM J. Res. Dev. 12, 251 (1968).
[CrossRef]

Hatzakis, M.

I. Haller, M. Hatzakis, R. Srinivasan, IBM J. Res. Dev. 12, 251 (1968).
[CrossRef]

Li, T.

T. Li, “Passive Integrated Optical Circuits,” in Digest of the Topical Meeting on Integrated Optics-Guide Waves, Materials, Devices, Las Vegas, 7–10 February, 1972 (Optical Society of America, Washington, D.C., 1972).

Marcatili, E. A. J.

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2103 (1969).

Marcuse, D.

D. Marcuse, Bell Syst. Tech. J. 48, 3187 (1969).

Martin, R. J.

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Miller, S. E.

S. E. Miller, Bell Syst. Tech. J. 48, 2059 (1969).

Muska, W. M.

W. M. Muska, to be published.

Srinivasan, R.

I. Haller, M. Hatzakis, R. Srinivasan, IBM J. Res. Dev. 12, 251 (1968).
[CrossRef]

Standley, R. D.

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

Tien, P. K.

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Ulrich, R.

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Vossen, J. L.

J. L. Vossen, J. Vac. Sci. Tech. 8, 512 (1971).
[CrossRef]

Wolf, E. D.

K. Amboss, E. D. Wolf, “Double-Deflection Aberrations in a Scanning Election Microscope,” in Symposium on Electron, Ion, and Laser Beam Tech., Boulder, Colo., 1971.

Appl. Phys. Lett. (1)

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Bell Syst. Tech. J. (6)

S. E. Miller, Bell Syst. Tech. J. 48, 2059 (1969).

D. Marcuse, Bell Syst. Tech. J. 48, 3187 (1969).

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

J. E. Goell, Bell Syst. Tech. J. 48, 2133 (1969).

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2103 (1969).

IBM J. Res. Dev. (1)

I. Haller, M. Hatzakis, R. Srinivasan, IBM J. Res. Dev. 12, 251 (1968).
[CrossRef]

J. Vac. Sci. Tech. (1)

J. L. Vossen, J. Vac. Sci. Tech. 8, 512 (1971).
[CrossRef]

Other (5)

W. M. Muska, to be published.

Barium Silicate Films for Integrated Optical Circuits, MM 72-1363-8.

K. Amboss, E. D. Wolf, “Double-Deflection Aberrations in a Scanning Election Microscope,” in Symposium on Electron, Ion, and Laser Beam Tech., Boulder, Colo., 1971.

J. E. Goell, “Election-Resist Fabrication of Integrated Optical Circuits,” in Digest of OSA Topical Meeting in Integrated Optics-Guided Waves, Materials, Devices, Las Vegas, 7–10 February 1972 (Optical Society of America, Washington D.C., 1972), pp MB8-1 to MB8-4.

T. Li, “Passive Integrated Optical Circuits,” in Digest of the Topical Meeting on Integrated Optics-Guide Waves, Materials, Devices, Las Vegas, 7–10 February, 1972 (Optical Society of America, Washington, D.C., 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Coupler configuration.

Fig. 2
Fig. 2

3-dB coupling length vs guide separation.

Fig. 3
Fig. 3

Envelope of the deflection voltage vs time.

Fig. 4
Fig. 4

Beam aberration vs position as measured by Amboss and Wolf for a 1-cm working distance with a 600-μ aperture (dotted line gives a path of small guide widening).

Fig. 5
Fig. 5

Resist undercutting.

Fig. 6
Fig. 6

Correction for guide parallelism.

Fig. 7
Fig. 7

Main steps of the resist process.

Fig. 8
Fig. 8

Intersection of two channels in PMM film.

Fig. 9
Fig. 9

End view of channel in PMM film.

Fig. 10
Fig. 10

Manganese mask.

Fig. 11
Fig. 11

Sputtered glass guide.

Fig. 12
Fig. 12

Section of a directional coupler.

Fig. 13
Fig. 13

Sequence of exposures of a 0.6328-μ beam propagating in a sputtered glass guide.

Fig. 14
Fig. 14

A 0.6328-μ beam propagating in a directional coupler: (a) 1.495 matching oil; (b) 1.522 matching oil. (Input guide ends at white arrow.)

Tables (4)

Tables Icon

Table I Maximum Dimensions for Single-Mode Guides a

Tables Icon

Table III Wall Loss for Δ = 0.01 a

Tables Icon

Table IV 3-dB Coupling Length a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A ( t ) sin ( 2 π f t )
A ( t ) cos ( 2 π f t )
A ( t ) = V 0 + Δ V g ( t )
α ( c + a ) - a ,

Metrics