Abstract

Measurements have been made on intrinsic optical bulk breakdown in ten alkali halides at 1.06 μm and in one at 0.69 μm. By comparing the results to previously reported experiments conducted at 10.6 μm and at direct current, it has been possible to identify the damage mechanism as electron avalanche breakdown. Self-focusing has been controlled by restricting the probe powers to well below the critical powers for catastrophic self-focusing, and damage from inclusions has been distinguished from intrinsic damage. Implications of this work for surface damage studies are explored.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Zverev, T. N. Mikhailova, V. A. Pashkov, N. M. Solovna, Zh. Eksp. Teor. Fiz. 53, 1849 (1967) [Sov. Phys.—JETP 26, 1053 (1968)].
  2. R. W. Hopper, D. R. Uhlman, J. Appl. Phys. 41, 4023 (1970).
    [CrossRef]
  3. C. R. Giuliano, J. H. Marburger, Phys. Rev. Lett. 27, 905 (1971).
    [CrossRef]
  4. Yu. K. Danileiko, A. A. Manenkov, A. M. Prokhorov, V. Ya. Khaimov-Mal’kov, Zh. Eksp. Teor. Fiz. 58, 31 (1970) [Sov. Phys.-JETP 31, 18 (1970)].
  5. E. Yablonovitch, Appl. Phys. Lett. 19, 495 (1971).
    [CrossRef]
  6. S. A. Akhmanov et al., Usp. Fiz Nauk 93, 19 (1967) [Sov. Phys.—Usp. 10, 609 (1968)].
  7. G. M. Zverev, V. A. Pashkov, Zh. Eksp. Teor. Fiz. 57, 1128 (1969) [Sov. Phys.—JETP 30, 616 (1970)].
  8. A. Von Hippel, J. Appl. Phys. 8, 815 (1937).
    [CrossRef]
  9. M. Bass, H. H. Barrett, IEEE J. Quantum Electron. QE-8, 338 (1972).
    [CrossRef]
  10. N. Bloembergen, Harvard University; private communication.
  11. C. C. Wang, E. L. Baardsen, Phys. Rev. 185, 1079 (1969); Phys. Rev. B1, 2827 (1970).
    [CrossRef]
  12. For a review, see J. J. O’Dwyer, The Theory of the Dielectric Breakdown of Solids (Oxford U. P., London, 1964).
  13. J. H. Calderwood, R. Cooper, A. A. Wallace, Proc. IEEE 100, Pt. IIA, No. 3, 1051 (1953).
  14. E. Yablonovitch, Thesis, Harvard University (1972); also E. Yablonovitch, N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972)
    [CrossRef]
  15. C. Kittel, Introduction to Solid State Physics (John Wiley and Sons, New York, 1966).
  16. D. W. Watson, W. Heyes, K. C. Kao, J. H. Calderwood, IEEE Trans. Elec. Insul. E1-1, 30 (1965). Also, G. A. Vorobev, N. I. Lebedeva, G. S. Naderova, Fiz. Tverd. Tela 13, 890 (1971) [Sov. Phys.—Solid State 13, 736 (1971)].
    [CrossRef]
  17. C. R. Giuliano, in NBS Special Publication 372, A. J. Glass, A. H. Guenther eds. (Govt. Printing Office, Washington, D.C., 1972), p. 55.
  18. Chen-Show Wang, Phys. Rev. 173, 908 (1968).
    [CrossRef]
  19. M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1959).
  20. V. I. Talanov, Zh. Eksp. Teor. Fiz. Pis. Red. 2, 218 (1965) [Sov. Phys.—JETP Lett. 2, 138 (1965)].
  21. E. L. Dawes, J. H. Marburger, Phys. Rev. 179, 862 (1969).
    [CrossRef]
  22. E. K. Kerr, IEEE J. Quantum Electron. QE-6, 616 (1970).
    [CrossRef]

1972

M. Bass, H. H. Barrett, IEEE J. Quantum Electron. QE-8, 338 (1972).
[CrossRef]

1971

C. R. Giuliano, J. H. Marburger, Phys. Rev. Lett. 27, 905 (1971).
[CrossRef]

E. Yablonovitch, Appl. Phys. Lett. 19, 495 (1971).
[CrossRef]

1970

Yu. K. Danileiko, A. A. Manenkov, A. M. Prokhorov, V. Ya. Khaimov-Mal’kov, Zh. Eksp. Teor. Fiz. 58, 31 (1970) [Sov. Phys.-JETP 31, 18 (1970)].

R. W. Hopper, D. R. Uhlman, J. Appl. Phys. 41, 4023 (1970).
[CrossRef]

E. K. Kerr, IEEE J. Quantum Electron. QE-6, 616 (1970).
[CrossRef]

1969

E. L. Dawes, J. H. Marburger, Phys. Rev. 179, 862 (1969).
[CrossRef]

C. C. Wang, E. L. Baardsen, Phys. Rev. 185, 1079 (1969); Phys. Rev. B1, 2827 (1970).
[CrossRef]

G. M. Zverev, V. A. Pashkov, Zh. Eksp. Teor. Fiz. 57, 1128 (1969) [Sov. Phys.—JETP 30, 616 (1970)].

1968

Chen-Show Wang, Phys. Rev. 173, 908 (1968).
[CrossRef]

1967

S. A. Akhmanov et al., Usp. Fiz Nauk 93, 19 (1967) [Sov. Phys.—Usp. 10, 609 (1968)].

G. M. Zverev, T. N. Mikhailova, V. A. Pashkov, N. M. Solovna, Zh. Eksp. Teor. Fiz. 53, 1849 (1967) [Sov. Phys.—JETP 26, 1053 (1968)].

1965

V. I. Talanov, Zh. Eksp. Teor. Fiz. Pis. Red. 2, 218 (1965) [Sov. Phys.—JETP Lett. 2, 138 (1965)].

D. W. Watson, W. Heyes, K. C. Kao, J. H. Calderwood, IEEE Trans. Elec. Insul. E1-1, 30 (1965). Also, G. A. Vorobev, N. I. Lebedeva, G. S. Naderova, Fiz. Tverd. Tela 13, 890 (1971) [Sov. Phys.—Solid State 13, 736 (1971)].
[CrossRef]

1953

J. H. Calderwood, R. Cooper, A. A. Wallace, Proc. IEEE 100, Pt. IIA, No. 3, 1051 (1953).

1937

A. Von Hippel, J. Appl. Phys. 8, 815 (1937).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov et al., Usp. Fiz Nauk 93, 19 (1967) [Sov. Phys.—Usp. 10, 609 (1968)].

Baardsen, E. L.

C. C. Wang, E. L. Baardsen, Phys. Rev. 185, 1079 (1969); Phys. Rev. B1, 2827 (1970).
[CrossRef]

Barrett, H. H.

M. Bass, H. H. Barrett, IEEE J. Quantum Electron. QE-8, 338 (1972).
[CrossRef]

Bass, M.

M. Bass, H. H. Barrett, IEEE J. Quantum Electron. QE-8, 338 (1972).
[CrossRef]

Bloembergen, N.

N. Bloembergen, Harvard University; private communication.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1959).

Calderwood, J. H.

D. W. Watson, W. Heyes, K. C. Kao, J. H. Calderwood, IEEE Trans. Elec. Insul. E1-1, 30 (1965). Also, G. A. Vorobev, N. I. Lebedeva, G. S. Naderova, Fiz. Tverd. Tela 13, 890 (1971) [Sov. Phys.—Solid State 13, 736 (1971)].
[CrossRef]

J. H. Calderwood, R. Cooper, A. A. Wallace, Proc. IEEE 100, Pt. IIA, No. 3, 1051 (1953).

Cooper, R.

J. H. Calderwood, R. Cooper, A. A. Wallace, Proc. IEEE 100, Pt. IIA, No. 3, 1051 (1953).

Danileiko, Yu. K.

Yu. K. Danileiko, A. A. Manenkov, A. M. Prokhorov, V. Ya. Khaimov-Mal’kov, Zh. Eksp. Teor. Fiz. 58, 31 (1970) [Sov. Phys.-JETP 31, 18 (1970)].

Dawes, E. L.

E. L. Dawes, J. H. Marburger, Phys. Rev. 179, 862 (1969).
[CrossRef]

Giuliano, C. R.

C. R. Giuliano, J. H. Marburger, Phys. Rev. Lett. 27, 905 (1971).
[CrossRef]

C. R. Giuliano, in NBS Special Publication 372, A. J. Glass, A. H. Guenther eds. (Govt. Printing Office, Washington, D.C., 1972), p. 55.

Heyes, W.

D. W. Watson, W. Heyes, K. C. Kao, J. H. Calderwood, IEEE Trans. Elec. Insul. E1-1, 30 (1965). Also, G. A. Vorobev, N. I. Lebedeva, G. S. Naderova, Fiz. Tverd. Tela 13, 890 (1971) [Sov. Phys.—Solid State 13, 736 (1971)].
[CrossRef]

Hopper, R. W.

R. W. Hopper, D. R. Uhlman, J. Appl. Phys. 41, 4023 (1970).
[CrossRef]

Kao, K. C.

D. W. Watson, W. Heyes, K. C. Kao, J. H. Calderwood, IEEE Trans. Elec. Insul. E1-1, 30 (1965). Also, G. A. Vorobev, N. I. Lebedeva, G. S. Naderova, Fiz. Tverd. Tela 13, 890 (1971) [Sov. Phys.—Solid State 13, 736 (1971)].
[CrossRef]

Kerr, E. K.

E. K. Kerr, IEEE J. Quantum Electron. QE-6, 616 (1970).
[CrossRef]

Khaimov-Mal’kov, V. Ya.

Yu. K. Danileiko, A. A. Manenkov, A. M. Prokhorov, V. Ya. Khaimov-Mal’kov, Zh. Eksp. Teor. Fiz. 58, 31 (1970) [Sov. Phys.-JETP 31, 18 (1970)].

Kittel, C.

C. Kittel, Introduction to Solid State Physics (John Wiley and Sons, New York, 1966).

Manenkov, A. A.

Yu. K. Danileiko, A. A. Manenkov, A. M. Prokhorov, V. Ya. Khaimov-Mal’kov, Zh. Eksp. Teor. Fiz. 58, 31 (1970) [Sov. Phys.-JETP 31, 18 (1970)].

Marburger, J. H.

C. R. Giuliano, J. H. Marburger, Phys. Rev. Lett. 27, 905 (1971).
[CrossRef]

E. L. Dawes, J. H. Marburger, Phys. Rev. 179, 862 (1969).
[CrossRef]

Mikhailova, T. N.

G. M. Zverev, T. N. Mikhailova, V. A. Pashkov, N. M. Solovna, Zh. Eksp. Teor. Fiz. 53, 1849 (1967) [Sov. Phys.—JETP 26, 1053 (1968)].

O’Dwyer, J. J.

For a review, see J. J. O’Dwyer, The Theory of the Dielectric Breakdown of Solids (Oxford U. P., London, 1964).

Pashkov, V. A.

G. M. Zverev, V. A. Pashkov, Zh. Eksp. Teor. Fiz. 57, 1128 (1969) [Sov. Phys.—JETP 30, 616 (1970)].

G. M. Zverev, T. N. Mikhailova, V. A. Pashkov, N. M. Solovna, Zh. Eksp. Teor. Fiz. 53, 1849 (1967) [Sov. Phys.—JETP 26, 1053 (1968)].

Prokhorov, A. M.

Yu. K. Danileiko, A. A. Manenkov, A. M. Prokhorov, V. Ya. Khaimov-Mal’kov, Zh. Eksp. Teor. Fiz. 58, 31 (1970) [Sov. Phys.-JETP 31, 18 (1970)].

Solovna, N. M.

G. M. Zverev, T. N. Mikhailova, V. A. Pashkov, N. M. Solovna, Zh. Eksp. Teor. Fiz. 53, 1849 (1967) [Sov. Phys.—JETP 26, 1053 (1968)].

Talanov, V. I.

V. I. Talanov, Zh. Eksp. Teor. Fiz. Pis. Red. 2, 218 (1965) [Sov. Phys.—JETP Lett. 2, 138 (1965)].

Uhlman, D. R.

R. W. Hopper, D. R. Uhlman, J. Appl. Phys. 41, 4023 (1970).
[CrossRef]

Von Hippel, A.

A. Von Hippel, J. Appl. Phys. 8, 815 (1937).
[CrossRef]

Wallace, A. A.

J. H. Calderwood, R. Cooper, A. A. Wallace, Proc. IEEE 100, Pt. IIA, No. 3, 1051 (1953).

Wang, C. C.

C. C. Wang, E. L. Baardsen, Phys. Rev. 185, 1079 (1969); Phys. Rev. B1, 2827 (1970).
[CrossRef]

Wang, Chen-Show

Chen-Show Wang, Phys. Rev. 173, 908 (1968).
[CrossRef]

Watson, D. W.

D. W. Watson, W. Heyes, K. C. Kao, J. H. Calderwood, IEEE Trans. Elec. Insul. E1-1, 30 (1965). Also, G. A. Vorobev, N. I. Lebedeva, G. S. Naderova, Fiz. Tverd. Tela 13, 890 (1971) [Sov. Phys.—Solid State 13, 736 (1971)].
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1959).

Yablonovitch, E.

E. Yablonovitch, Appl. Phys. Lett. 19, 495 (1971).
[CrossRef]

E. Yablonovitch, Thesis, Harvard University (1972); also E. Yablonovitch, N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972)
[CrossRef]

Zverev, G. M.

G. M. Zverev, V. A. Pashkov, Zh. Eksp. Teor. Fiz. 57, 1128 (1969) [Sov. Phys.—JETP 30, 616 (1970)].

G. M. Zverev, T. N. Mikhailova, V. A. Pashkov, N. M. Solovna, Zh. Eksp. Teor. Fiz. 53, 1849 (1967) [Sov. Phys.—JETP 26, 1053 (1968)].

Appl. Phys. Lett.

E. Yablonovitch, Appl. Phys. Lett. 19, 495 (1971).
[CrossRef]

IEEE J. Quantum Electron.

M. Bass, H. H. Barrett, IEEE J. Quantum Electron. QE-8, 338 (1972).
[CrossRef]

E. K. Kerr, IEEE J. Quantum Electron. QE-6, 616 (1970).
[CrossRef]

IEEE Trans. Elec. Insul.

D. W. Watson, W. Heyes, K. C. Kao, J. H. Calderwood, IEEE Trans. Elec. Insul. E1-1, 30 (1965). Also, G. A. Vorobev, N. I. Lebedeva, G. S. Naderova, Fiz. Tverd. Tela 13, 890 (1971) [Sov. Phys.—Solid State 13, 736 (1971)].
[CrossRef]

J. Appl. Phys.

A. Von Hippel, J. Appl. Phys. 8, 815 (1937).
[CrossRef]

R. W. Hopper, D. R. Uhlman, J. Appl. Phys. 41, 4023 (1970).
[CrossRef]

Phys. Rev.

Chen-Show Wang, Phys. Rev. 173, 908 (1968).
[CrossRef]

C. C. Wang, E. L. Baardsen, Phys. Rev. 185, 1079 (1969); Phys. Rev. B1, 2827 (1970).
[CrossRef]

E. L. Dawes, J. H. Marburger, Phys. Rev. 179, 862 (1969).
[CrossRef]

Phys. Rev. Lett.

C. R. Giuliano, J. H. Marburger, Phys. Rev. Lett. 27, 905 (1971).
[CrossRef]

Proc. IEEE

J. H. Calderwood, R. Cooper, A. A. Wallace, Proc. IEEE 100, Pt. IIA, No. 3, 1051 (1953).

Usp. Fiz Nauk

S. A. Akhmanov et al., Usp. Fiz Nauk 93, 19 (1967) [Sov. Phys.—Usp. 10, 609 (1968)].

Zh. Eksp. Teor. Fiz.

G. M. Zverev, V. A. Pashkov, Zh. Eksp. Teor. Fiz. 57, 1128 (1969) [Sov. Phys.—JETP 30, 616 (1970)].

Yu. K. Danileiko, A. A. Manenkov, A. M. Prokhorov, V. Ya. Khaimov-Mal’kov, Zh. Eksp. Teor. Fiz. 58, 31 (1970) [Sov. Phys.-JETP 31, 18 (1970)].

G. M. Zverev, T. N. Mikhailova, V. A. Pashkov, N. M. Solovna, Zh. Eksp. Teor. Fiz. 53, 1849 (1967) [Sov. Phys.—JETP 26, 1053 (1968)].

Zh. Eksp. Teor. Fiz. Pis. Red.

V. I. Talanov, Zh. Eksp. Teor. Fiz. Pis. Red. 2, 218 (1965) [Sov. Phys.—JETP Lett. 2, 138 (1965)].

Other

N. Bloembergen, Harvard University; private communication.

E. Yablonovitch, Thesis, Harvard University (1972); also E. Yablonovitch, N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972)
[CrossRef]

C. Kittel, Introduction to Solid State Physics (John Wiley and Sons, New York, 1966).

For a review, see J. J. O’Dwyer, The Theory of the Dielectric Breakdown of Solids (Oxford U. P., London, 1964).

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1959).

C. R. Giuliano, in NBS Special Publication 372, A. J. Glass, A. H. Guenther eds. (Govt. Printing Office, Washington, D.C., 1972), p. 55.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Laser and variable attenuator configuration for damage studies.

Fig. 2
Fig. 2

Intensity distribution of the YAG laser as a function of radial distance from the beam center at the position of the focusing lens.

Fig. 3
Fig. 3

Intrinsic Damage in RbCl.

Fig. 4
Fig. 4

Inclusion damage in RbCl.

Fig. 5
Fig. 5

Nd:YAG laser pulse transmitted through the sample.

Fig. 6
Fig. 6

Comparison of breakdown strengths for various alkali halides studies at dc, 10.6-μm and 1.06 μm

Fig. 7
Fig. 7

Ruby laser pulses transmitted through NaCl sample. A TEM00 mode ruby laser with total pulse energy of 0.3 mJ was focused inside the inclusion-free sample with a 14-mm focal length lens. (a) Damaged when peak laser field was reached, EDamage/EPeak = 1. (b) Damaged before peak laser field was reached, EDamage/EPeak = 0.896. (c) Damaged after peak laser field was reached, EDamage/Epeak = 0.954. (d) Three successive pulses, no damage, Epeak ≡ 1 (arbitrary units).

Tables (4)

Tables Icon

Table I Laser Parameters

Tables Icon

Table II Calculated Steady-State, Self-Focusing Parameters and Experimental Values of Pulse-Widths and Peak Power

Tables Icon

Table III Relative Breakdown Fields—Normalized to ENaCl ≈ 2 × 106V/cm

Tables Icon

Table IV Absolute Breakdown Strength of NaCl

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

N ( t ) = N 0 exp [ 0 t - α ( E ) d t ] .
d W / ( d t ) = ( N e 2 τ ) / [ m ( 1 + ω 2 τ 2 ) ] E 2
[ ( n 0 + n 2 A 2 ) 2 - ( grad ϕ ) 2 ] A + ( 1 / k 0 2 ) 2 A = 0.
n 1 2 - ( grad ϕ ) 2 = 0 ,
n 1 = n 0 + n 2 A 2 + ( 1 / 2 k 0 2 n 0 ) ( 2 A / A ) .
d 2 r / d ρ 2 = ( 1 / n 1 ) [ grad n 1 - ( d n 1 / d ρ ) ( d r / d ρ ) ] .
d 2 r / d ρ 2 d 2 r / d z 2 = ( 1 / n 1 ) grad n 1 .
A 2 ( r ) = p ( x ) / a 2 ( z ) = effective power / beam area .
n 1 = n 0 + [ 1 / a 2 ( z ) ] f ( x ) ,
d 2 r / d z 2 = ( 1 / n 0 ) [ 1 / a 3 ( z ) ] ( d / d x ) [ f ( x ) ] ,
f ( x ) = n 2 ( a A ) 2 + [ 1 / ( 2 k 0 2 n 0 ) a A ] { [ d 2 ( a A ) / d x 2 ] + ( 1 / x ) [ d ( a A ) / d x ] } .
d 2 a / d z 2 = [ 1 / a 3 ( z ) ] g ( x ) ,
g ( x ) = ( 1 / n 0 x ) ( d / d x ) f ( x ) .
( d a / d z ) 2 = - [ g ( x ) / a 2 ] + c .
d = d 0 ( 1 - P / P c r ) 1 / 2 ,
P c r = c λ 2 / 32 π n 2 .
n 2 = n 0 [ ρ ( n 0 / ρ ) ] 2 / 4 π ρ v 2 ,
( n 2 ) transient = ( n 2 ) steady state [ 1 - ( a / v ρ ) D ( v ρ / a ) ] ,
D ( ξ ) = exp ( - ξ ) 0 ξ exp η 2 d η .
( n 2 ) transient k ( n 2 ) steady state ( v 2 t p 2 / a 2 ) .
P c t p / τ 1 / 2 = ( P c ) steady state ( a 2 / k v 2 t p 2 ) .

Metrics