Abstract

The first directly comparable measurements of the laser-induced surface damage process at both ruby and Nd:YAG laser wavelengths are reported. The most striking feature of the data is that all the materials studied are harder to damage at 0.69 μm than at 1.06 μm. The probabilistic nature of the laser-induced damage process at 1.06 μm was explored further by measuring the distribution of breakdown starting times with an image-converter streak camera. The observed distribution is described by the compound probability that breakdown occurs at a particular time, given that it has not occurred before that time. In addition, several connections between the probabilistic and thresholdlike interpretations of laser-induced damage are discussed. It is shown that these points of view are not totally incompatible.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bass, H. H. Barrett, NBS Special Publication 356 (1971), p. 76, and IEEE J. Quant. Electron. QE-8, 338 (1972).
  2. M. Bass, H. H. Barrett, L. H. Holway, Scientific Report No. 1 for Contract F19628-70-C-0223 (February1972).
  3. M. Bass, IEEE J. Quant. Electron. QE-7, 350 (1971).
    [CrossRef]
  4. C. R. Guiliano, R. W. Hellwarth, L. D. Hess, G. R. Rickel, Semiannual Report 2 for Contract F19628-69-C-0277 (July1970).
  5. V. Evtuhov, J. K. Neeland, in Lasers, A. K. Levine Ed. (M. Dekker, New York, 1966), Vol. 1.
  6. E. Yablonovitch, Ph.D. Thesis, Harvard University (June1972).
  7. J. B. Birks, The Theory and Practice of Scintillation Counting (Pergamon Press, London, 1967).
  8. F. Seitz, Phys. Rev. 76, 1376 (1949).
    [CrossRef]
  9. E. O. Kane, Phys. Rev. 159, 624 (1967).
    [CrossRef]
  10. L. Merker, J. Cobb, N. L. Industries; private communication.
  11. D. W. Fradin, E. Yablonovitch, M. Bass, “Comparison of Laser Induced Bulk Damage in Alkali-Halides,” 4th ASTM-NBS Symposium on Damage in Laser Materials (1972).

1971 (2)

M. Bass, H. H. Barrett, NBS Special Publication 356 (1971), p. 76, and IEEE J. Quant. Electron. QE-8, 338 (1972).

M. Bass, IEEE J. Quant. Electron. QE-7, 350 (1971).
[CrossRef]

1967 (1)

E. O. Kane, Phys. Rev. 159, 624 (1967).
[CrossRef]

1949 (1)

F. Seitz, Phys. Rev. 76, 1376 (1949).
[CrossRef]

Barrett, H. H.

M. Bass, H. H. Barrett, NBS Special Publication 356 (1971), p. 76, and IEEE J. Quant. Electron. QE-8, 338 (1972).

M. Bass, H. H. Barrett, L. H. Holway, Scientific Report No. 1 for Contract F19628-70-C-0223 (February1972).

Bass, M.

M. Bass, IEEE J. Quant. Electron. QE-7, 350 (1971).
[CrossRef]

M. Bass, H. H. Barrett, NBS Special Publication 356 (1971), p. 76, and IEEE J. Quant. Electron. QE-8, 338 (1972).

D. W. Fradin, E. Yablonovitch, M. Bass, “Comparison of Laser Induced Bulk Damage in Alkali-Halides,” 4th ASTM-NBS Symposium on Damage in Laser Materials (1972).

M. Bass, H. H. Barrett, L. H. Holway, Scientific Report No. 1 for Contract F19628-70-C-0223 (February1972).

Birks, J. B.

J. B. Birks, The Theory and Practice of Scintillation Counting (Pergamon Press, London, 1967).

Cobb, J.

L. Merker, J. Cobb, N. L. Industries; private communication.

Evtuhov, V.

V. Evtuhov, J. K. Neeland, in Lasers, A. K. Levine Ed. (M. Dekker, New York, 1966), Vol. 1.

Fradin, D. W.

D. W. Fradin, E. Yablonovitch, M. Bass, “Comparison of Laser Induced Bulk Damage in Alkali-Halides,” 4th ASTM-NBS Symposium on Damage in Laser Materials (1972).

Guiliano, C. R.

C. R. Guiliano, R. W. Hellwarth, L. D. Hess, G. R. Rickel, Semiannual Report 2 for Contract F19628-69-C-0277 (July1970).

Hellwarth, R. W.

C. R. Guiliano, R. W. Hellwarth, L. D. Hess, G. R. Rickel, Semiannual Report 2 for Contract F19628-69-C-0277 (July1970).

Hess, L. D.

C. R. Guiliano, R. W. Hellwarth, L. D. Hess, G. R. Rickel, Semiannual Report 2 for Contract F19628-69-C-0277 (July1970).

Holway, L. H.

M. Bass, H. H. Barrett, L. H. Holway, Scientific Report No. 1 for Contract F19628-70-C-0223 (February1972).

Kane, E. O.

E. O. Kane, Phys. Rev. 159, 624 (1967).
[CrossRef]

Merker, L.

L. Merker, J. Cobb, N. L. Industries; private communication.

Neeland, J. K.

V. Evtuhov, J. K. Neeland, in Lasers, A. K. Levine Ed. (M. Dekker, New York, 1966), Vol. 1.

Rickel, G. R.

C. R. Guiliano, R. W. Hellwarth, L. D. Hess, G. R. Rickel, Semiannual Report 2 for Contract F19628-69-C-0277 (July1970).

Seitz, F.

F. Seitz, Phys. Rev. 76, 1376 (1949).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, Ph.D. Thesis, Harvard University (June1972).

D. W. Fradin, E. Yablonovitch, M. Bass, “Comparison of Laser Induced Bulk Damage in Alkali-Halides,” 4th ASTM-NBS Symposium on Damage in Laser Materials (1972).

IEEE J. Quant. Electron. (1)

M. Bass, IEEE J. Quant. Electron. QE-7, 350 (1971).
[CrossRef]

NBS Special Publication 356 (1)

M. Bass, H. H. Barrett, NBS Special Publication 356 (1971), p. 76, and IEEE J. Quant. Electron. QE-8, 338 (1972).

Phys. Rev. (2)

F. Seitz, Phys. Rev. 76, 1376 (1949).
[CrossRef]

E. O. Kane, Phys. Rev. 159, 624 (1967).
[CrossRef]

Other (7)

L. Merker, J. Cobb, N. L. Industries; private communication.

D. W. Fradin, E. Yablonovitch, M. Bass, “Comparison of Laser Induced Bulk Damage in Alkali-Halides,” 4th ASTM-NBS Symposium on Damage in Laser Materials (1972).

C. R. Guiliano, R. W. Hellwarth, L. D. Hess, G. R. Rickel, Semiannual Report 2 for Contract F19628-69-C-0277 (July1970).

V. Evtuhov, J. K. Neeland, in Lasers, A. K. Levine Ed. (M. Dekker, New York, 1966), Vol. 1.

E. Yablonovitch, Ph.D. Thesis, Harvard University (June1972).

J. B. Birks, The Theory and Practice of Scintillation Counting (Pergamon Press, London, 1967).

M. Bass, H. H. Barrett, L. H. Holway, Scientific Report No. 1 for Contract F19628-70-C-0223 (February1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram of automatic pulse and damage monitoring apparatus.

Fig. 2
Fig. 2

Record of exposures of X-cut crystalline quartz to pulses of ruby laser light ~9 GW/cm2.

Fig. 3
Fig. 3

Ruby laser energy recording showing best pulse-to-pulse stability.

Fig. 4
Fig. 4

Effects of rod alignment on output pulses for Q-switched ruby. (a) Rod badly misaligned. (b) Rod coarsely aligned. (c) Cavity finely turned.

Fig. 5
Fig. 5

Schematic diagram of a laser cavity showing potential mode-selecting intracavity resonators.

Fig. 6
Fig. 6

Electric field at 1.06 μm required to accelerate an electron to a particular energy. Each curve is numbered according to the number of half-cycles of the field required to accelerate the electron assuming only perfectly lucky collisions occur. The number then is also the number of the collision that must occur for the electron to continue to gain energy from the field.

Fig. 7
Fig. 7

Electric field at 0.69 μm required to accelerate an electron to a particular energy. Each curve is numbered according to the number of half-cycles of the field required to accelerate the electron assuming only perfectly lucky collisions occur. The number then is also the number of the collisions that must occur for the electron to continue to gain energy from the field.

Fig. 8
Fig. 8

Distribution of surface breakdown starting times for plate glass for three different damage probabilities.

Fig. 9
Fig. 9

Distribution of surface breakdown starting times for SrTiO3 for two different damage probabilities.

Fig. 10
Fig. 10

Occurrence of internal damage in NaCl due to ruby laser irradiation. The laser intensity transmitted through the sample is shown in these photos. (a) Damaged when the peak laser field was reached: Edamage/Epeak = 1. (b) Damaged before the peak laser field was reached Edamage/Epeak = 0896. (c) Damaged after the peak laser field was reached: Edamage/Epeak = 0.954. (d) Three successive pulses, no damage: Epeak ≡ 1 (arbitrary units).

Fig. 11
Fig. 11

Probability that damage occurs on the Nth pulse vs N for fused quartz. A 17.9-GW/cm2 TEM00 mode 1.064-μm beam was used.

Fig. 12
Fig. 12

Probability that damage occurs on the Nth pulse vs N for SrTiO3. A 0.5-GW/cm2 TEM00 mode 1.06-μm beam was used.

Fig. 13
Fig. 13

Sketch of a plot of the Log of damage probability vs the inverse optical electric field for two different irradiated areas. p′(E′) is the result for an irradiated area larger than that used to obtain p(E).

Fig. 14
Fig. 14

Sketch of a plot of the log of damage probability vs power density for the two cases as in Fig. 13.

Tables (2)

Tables Icon

Table I Laser Parameters

Tables Icon

Table II Comparison of Damage Properties at 1.0645 and 0.6943 μm

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

p 1 exp ( - K / E )
g ( t ) = - [ d ν ( t ) / d t ] = ν ( t ) h ( t ) .
ν ( t ) = exp [ - 0 t h ( t ) d t ] ,
g ( t ) = h ( t ) exp [ - 0 t h ( t ) d t ]
d [ g ( t ) ] d t t M = { d [ h ( t M ) ] d t - [ h ( t M ) ] 2 } exp [ - 0 t M h ( t ) d t ) ] = 0.
exp [ - 0 t M h ( t ) d t ] 0 ,
d [ h ( t M ) ] / d t = [ h ( t M ) ] 2 .
d h ( t ) / d t > 0.
d h / d t = ( d h / d E ) ( d E / d t ) .
d h / d E > 0 for all t .
d E / d t > 0
f N = p 1 ( 1 - p 1 ) N - 1 .
p ( E ) = N p ( E )
d [ l n p ( E ) ] / d ( 1 / E ) = - K
d [ l n p ( E ) ] / d ( 1 / E ) = - K .
Δ ( 1 / E ) = Δ ( 1 / E ) ,
P = E 2 ,
Δ ( 1 / E ) = - ( Δ P / P ) ( 1 / 2 E )
Δ ( 1 / E ) = ( - Δ P / P ) ( 1 / 2 E ) .
Δ P i j / P i = ( E i / E i ) ( Δ P i j / P i ) .
Δ P i j / P i < ( Δ P i j / P i )
Δ P i j < Δ P i j .

Metrics