Abstract

The concentration of the electric field strength in the neighborhood of micropores and cracks may lower the nominal external intensity for electric avalanche breakdown by a factor 2–100 depending on the geometry of the crack and the dielectric constant. The presence of absorbing inclusions at the edge of microcracks will often be the dominant mechanism giving the lowest surface damage threshold. Inclusions and cracks with characteristic dimensions less than about 10−6 cm will not lower the breakdown threshold appreciably.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, Appl. Phys. Lett. 19, 495 (1971).
    [CrossRef]
  2. D. Fradin, E. Yablonovitch, M. Bass, Appl. Opt. 12, 700 (1973).
    [CrossRef] [PubMed]
  3. R. W. Hopper, D. R. Uhlmann, J. Appl. Phys. 41, 4023 (1970).
    [CrossRef]
  4. M. D. Crisp, N. L. Boling, G. Dube, Appl. Phys. Lett. to be published.
  5. C. R. Giuliano, Appl. Phys. Lett.21, 39 (1972) and private communication.
    [CrossRef]
  6. E. Yablonovitch, N. Bloembergen, submitted to Phys. Rev. Lett.
  7. See, for example, L. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, London, 1960).
  8. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1940), pp. 211–214.
  9. F. A. Horrigan, T. F. Deutsch, Raytheon Research Report (July1972); private communication.
  10. See, for example, M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1960).
  11. J. C. Maxwell, A Treatise on Electricity (Clarendon Press, Oxford, 1892), Vol. 1, p. 294.
  12. Note that a in this section denotes the small demension of an inclusion and should not be confused with the a in Sec. III and Fig. 1, where it denotes the major axis of an ellipsoidal crack.

1973 (1)

1971 (1)

E. Yablonovitch, Appl. Phys. Lett. 19, 495 (1971).
[CrossRef]

1970 (1)

R. W. Hopper, D. R. Uhlmann, J. Appl. Phys. 41, 4023 (1970).
[CrossRef]

Bass, M.

Bloembergen, N.

E. Yablonovitch, N. Bloembergen, submitted to Phys. Rev. Lett.

Boling, N. L.

M. D. Crisp, N. L. Boling, G. Dube, Appl. Phys. Lett. to be published.

Born, M.

See, for example, M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1960).

Crisp, M. D.

M. D. Crisp, N. L. Boling, G. Dube, Appl. Phys. Lett. to be published.

Deutsch, T. F.

F. A. Horrigan, T. F. Deutsch, Raytheon Research Report (July1972); private communication.

Dube, G.

M. D. Crisp, N. L. Boling, G. Dube, Appl. Phys. Lett. to be published.

Fradin, D.

Giuliano, C. R.

C. R. Giuliano, Appl. Phys. Lett.21, 39 (1972) and private communication.
[CrossRef]

Hopper, R. W.

R. W. Hopper, D. R. Uhlmann, J. Appl. Phys. 41, 4023 (1970).
[CrossRef]

Horrigan, F. A.

F. A. Horrigan, T. F. Deutsch, Raytheon Research Report (July1972); private communication.

Landau, L.

See, for example, L. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, London, 1960).

Lifshitz, E. M.

See, for example, L. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, London, 1960).

Maxwell, J. C.

J. C. Maxwell, A Treatise on Electricity (Clarendon Press, Oxford, 1892), Vol. 1, p. 294.

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1940), pp. 211–214.

Uhlmann, D. R.

R. W. Hopper, D. R. Uhlmann, J. Appl. Phys. 41, 4023 (1970).
[CrossRef]

Wolf, E.

See, for example, M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1960).

Yablonovitch, E.

D. Fradin, E. Yablonovitch, M. Bass, Appl. Opt. 12, 700 (1973).
[CrossRef] [PubMed]

E. Yablonovitch, Appl. Phys. Lett. 19, 495 (1971).
[CrossRef]

E. Yablonovitch, N. Bloembergen, submitted to Phys. Rev. Lett.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Yablonovitch, Appl. Phys. Lett. 19, 495 (1971).
[CrossRef]

J. Appl. Phys. (1)

R. W. Hopper, D. R. Uhlmann, J. Appl. Phys. 41, 4023 (1970).
[CrossRef]

Other (9)

M. D. Crisp, N. L. Boling, G. Dube, Appl. Phys. Lett. to be published.

C. R. Giuliano, Appl. Phys. Lett.21, 39 (1972) and private communication.
[CrossRef]

E. Yablonovitch, N. Bloembergen, submitted to Phys. Rev. Lett.

See, for example, L. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, London, 1960).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1940), pp. 211–214.

F. A. Horrigan, T. F. Deutsch, Raytheon Research Report (July1972); private communication.

See, for example, M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1960).

J. C. Maxwell, A Treatise on Electricity (Clarendon Press, Oxford, 1892), Vol. 1, p. 294.

Note that a in this section denotes the small demension of an inclusion and should not be confused with the a in Sec. III and Fig. 1, where it denotes the major axis of an ellipsoidal crack.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Representative geometries for electric field enhancement near pores, scratches, and incipient cracks. Typical dimensions are r = 0.1 μm, c = 0.1 μm, and a = 1 μm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E in 8 = 1 / { 1 + [ ( 1 - ) / ] L } E 0 ,
E A = [ 3 / ( 2 + 1 ) ] E 0 .
E B = [ 2 / ( + 1 ) ] E 0 .
L = 1 - ( π / 2 ) ( c / a ) or L 1 for c / a 1 / < 1.
E c = E 0 .
Δ T = [ ( ω χ E 2 ) / c v ] t ,
α = 8 π 2 χ / λ n ,
Δ T s s ( ω χ E 2 a 2 ) / D T C v .

Metrics