Abstract

A summary of recent investigations of surface damage of transparent dielectrics is presented. Damage threshold measurements made on Owens-Illinois ED-2 laser glass at normal incidence and at Brewster’s angle are reported. For 30-nsec pulses at normal incidence, exit surface damage thresholds are typically 100 J/cm2 for ED-2 glass. The observed ratio between entrance and exit damage thresholds for the two geometries can be explained by considering the electric field strengths at the surfaces and including interference between incident and reflected light waves. A similar analysis is applied to surface damage that occurs during total internal reflection. Finally the morphology of surface damage of ED-2 laser glass is described, and a model based upon reflections from the laser induced plasma is proposed to explain the observations.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. L. Boling, L. Spanoudis, P. R. Wengert, Semiannual Technical Report, ARPA Order 1441 (December1971).
  2. M. Bass, H. H. Barrett, J. Quantum Electron. QE-8, 338 (1972).
    [CrossRef]
  3. C. R. Giuliano, Appl. Phys. Lett. 5, 137 (1964).
    [CrossRef]
  4. I. A. Fersman, L. D. Khazov, Sov. Phys. Tech. Phys. 15, 834 (1970).
  5. M. D. Crisp, N. L. Boling, G. Dubé, Appl. Phys. Lett.,f 21, 364 (1972).
    [CrossRef]
  6. M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964), p. 38ff.
  7. V. V. Lyubimov, I. A. Fersman, L. D. Khazov, Sov. J. Quantum Electron. 1, 201 (1971).
    [CrossRef]
  8. M. D. Crisp, Opt. Commun. 6, 213 (1972).
    [CrossRef]
  9. O. A. Motovilov, O. G. Rudina, Sov. J. Opt. Technol. 35, 624 (1969) and V. V. Korobkin, private communication.
  10. N. Bloembergen, Appl. Opt. 12, 661 (1973).
    [CrossRef] [PubMed]
  11. N. L. Boling, R. W. Beck, in Glass Damage Threshold Studies, ASTM Special Technical Publication 356, A. J. Glass, A. Guenther, Eds., (AS, Philadelphia, 1971).
  12. W. Haller, N. N. Winogradoff, J. Am. Ceram. Soc. 54, 314 (1971).
    [CrossRef]
  13. C. R. Guiliano, R. W. Hellwarth, G. R. Rickel, Semiannual Report 5, ARPA Order 1434 (January1972).
  14. N. Goldblatt, Appl. Opt. 8, 1559 (1969].
    [CrossRef] [PubMed]
  15. E. L. Kerr, IEEE J. Quantum Electron. QE-8, 723 (1972).
    [CrossRef]
  16. N. L. Boling, G. Dubé, M. D. Crisp, Appl. Phys. Lett., 21, 487 (1972).
    [CrossRef]
  17. J. M. Dawson, Phys. Fluids 7, 981 (1964).
    [CrossRef]
  18. M. Bass, H. H. Barrett, L. H. Holoway, Scientific Report 1, ARPA Contract F19628–70-C-0223, ARPA Order 1434 AMD 1 (February1972).
  19. H. Dupont, A. Donzel, J. Ernest, Appl. Phys. Lett. 11, 271 (1967).
    [CrossRef]
  20. E. Yblonovitch, N. Bloembergen, submitted to Phys. Rev. Lett., (1972).

1973

1972

M. Bass, H. H. Barrett, J. Quantum Electron. QE-8, 338 (1972).
[CrossRef]

M. D. Crisp, N. L. Boling, G. Dubé, Appl. Phys. Lett.,f 21, 364 (1972).
[CrossRef]

M. D. Crisp, Opt. Commun. 6, 213 (1972).
[CrossRef]

E. L. Kerr, IEEE J. Quantum Electron. QE-8, 723 (1972).
[CrossRef]

N. L. Boling, G. Dubé, M. D. Crisp, Appl. Phys. Lett., 21, 487 (1972).
[CrossRef]

1971

V. V. Lyubimov, I. A. Fersman, L. D. Khazov, Sov. J. Quantum Electron. 1, 201 (1971).
[CrossRef]

W. Haller, N. N. Winogradoff, J. Am. Ceram. Soc. 54, 314 (1971).
[CrossRef]

1970

I. A. Fersman, L. D. Khazov, Sov. Phys. Tech. Phys. 15, 834 (1970).

1969

N. Goldblatt, Appl. Opt. 8, 1559 (1969].
[CrossRef] [PubMed]

O. A. Motovilov, O. G. Rudina, Sov. J. Opt. Technol. 35, 624 (1969) and V. V. Korobkin, private communication.

1967

H. Dupont, A. Donzel, J. Ernest, Appl. Phys. Lett. 11, 271 (1967).
[CrossRef]

1964

J. M. Dawson, Phys. Fluids 7, 981 (1964).
[CrossRef]

C. R. Giuliano, Appl. Phys. Lett. 5, 137 (1964).
[CrossRef]

Barrett, H. H.

M. Bass, H. H. Barrett, J. Quantum Electron. QE-8, 338 (1972).
[CrossRef]

M. Bass, H. H. Barrett, L. H. Holoway, Scientific Report 1, ARPA Contract F19628–70-C-0223, ARPA Order 1434 AMD 1 (February1972).

Bass, M.

M. Bass, H. H. Barrett, J. Quantum Electron. QE-8, 338 (1972).
[CrossRef]

M. Bass, H. H. Barrett, L. H. Holoway, Scientific Report 1, ARPA Contract F19628–70-C-0223, ARPA Order 1434 AMD 1 (February1972).

Beck, R. W.

N. L. Boling, R. W. Beck, in Glass Damage Threshold Studies, ASTM Special Technical Publication 356, A. J. Glass, A. Guenther, Eds., (AS, Philadelphia, 1971).

Bloembergen, N.

N. Bloembergen, Appl. Opt. 12, 661 (1973).
[CrossRef] [PubMed]

E. Yblonovitch, N. Bloembergen, submitted to Phys. Rev. Lett., (1972).

Boling, N. L.

M. D. Crisp, N. L. Boling, G. Dubé, Appl. Phys. Lett.,f 21, 364 (1972).
[CrossRef]

N. L. Boling, G. Dubé, M. D. Crisp, Appl. Phys. Lett., 21, 487 (1972).
[CrossRef]

N. L. Boling, L. Spanoudis, P. R. Wengert, Semiannual Technical Report, ARPA Order 1441 (December1971).

N. L. Boling, R. W. Beck, in Glass Damage Threshold Studies, ASTM Special Technical Publication 356, A. J. Glass, A. Guenther, Eds., (AS, Philadelphia, 1971).

Born, M.

M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964), p. 38ff.

Crisp, M. D.

M. D. Crisp, Opt. Commun. 6, 213 (1972).
[CrossRef]

M. D. Crisp, N. L. Boling, G. Dubé, Appl. Phys. Lett.,f 21, 364 (1972).
[CrossRef]

N. L. Boling, G. Dubé, M. D. Crisp, Appl. Phys. Lett., 21, 487 (1972).
[CrossRef]

Dawson, J. M.

J. M. Dawson, Phys. Fluids 7, 981 (1964).
[CrossRef]

Donzel, A.

H. Dupont, A. Donzel, J. Ernest, Appl. Phys. Lett. 11, 271 (1967).
[CrossRef]

Dubé, G.

M. D. Crisp, N. L. Boling, G. Dubé, Appl. Phys. Lett.,f 21, 364 (1972).
[CrossRef]

N. L. Boling, G. Dubé, M. D. Crisp, Appl. Phys. Lett., 21, 487 (1972).
[CrossRef]

Dupont, H.

H. Dupont, A. Donzel, J. Ernest, Appl. Phys. Lett. 11, 271 (1967).
[CrossRef]

Ernest, J.

H. Dupont, A. Donzel, J. Ernest, Appl. Phys. Lett. 11, 271 (1967).
[CrossRef]

Fersman, I. A.

V. V. Lyubimov, I. A. Fersman, L. D. Khazov, Sov. J. Quantum Electron. 1, 201 (1971).
[CrossRef]

I. A. Fersman, L. D. Khazov, Sov. Phys. Tech. Phys. 15, 834 (1970).

Giuliano, C. R.

C. R. Giuliano, Appl. Phys. Lett. 5, 137 (1964).
[CrossRef]

Goldblatt, N.

Guiliano, C. R.

C. R. Guiliano, R. W. Hellwarth, G. R. Rickel, Semiannual Report 5, ARPA Order 1434 (January1972).

Haller, W.

W. Haller, N. N. Winogradoff, J. Am. Ceram. Soc. 54, 314 (1971).
[CrossRef]

Hellwarth, R. W.

C. R. Guiliano, R. W. Hellwarth, G. R. Rickel, Semiannual Report 5, ARPA Order 1434 (January1972).

Holoway, L. H.

M. Bass, H. H. Barrett, L. H. Holoway, Scientific Report 1, ARPA Contract F19628–70-C-0223, ARPA Order 1434 AMD 1 (February1972).

Kerr, E. L.

E. L. Kerr, IEEE J. Quantum Electron. QE-8, 723 (1972).
[CrossRef]

Khazov, L. D.

V. V. Lyubimov, I. A. Fersman, L. D. Khazov, Sov. J. Quantum Electron. 1, 201 (1971).
[CrossRef]

I. A. Fersman, L. D. Khazov, Sov. Phys. Tech. Phys. 15, 834 (1970).

Lyubimov, V. V.

V. V. Lyubimov, I. A. Fersman, L. D. Khazov, Sov. J. Quantum Electron. 1, 201 (1971).
[CrossRef]

Motovilov, O. A.

O. A. Motovilov, O. G. Rudina, Sov. J. Opt. Technol. 35, 624 (1969) and V. V. Korobkin, private communication.

Rickel, G. R.

C. R. Guiliano, R. W. Hellwarth, G. R. Rickel, Semiannual Report 5, ARPA Order 1434 (January1972).

Rudina, O. G.

O. A. Motovilov, O. G. Rudina, Sov. J. Opt. Technol. 35, 624 (1969) and V. V. Korobkin, private communication.

Spanoudis, L.

N. L. Boling, L. Spanoudis, P. R. Wengert, Semiannual Technical Report, ARPA Order 1441 (December1971).

Wengert, P. R.

N. L. Boling, L. Spanoudis, P. R. Wengert, Semiannual Technical Report, ARPA Order 1441 (December1971).

Winogradoff, N. N.

W. Haller, N. N. Winogradoff, J. Am. Ceram. Soc. 54, 314 (1971).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964), p. 38ff.

Yblonovitch, E.

E. Yblonovitch, N. Bloembergen, submitted to Phys. Rev. Lett., (1972).

Appl. Opt.

Appl. Phys. Lett.

C. R. Giuliano, Appl. Phys. Lett. 5, 137 (1964).
[CrossRef]

M. D. Crisp, N. L. Boling, G. Dubé, Appl. Phys. Lett.,f 21, 364 (1972).
[CrossRef]

N. L. Boling, G. Dubé, M. D. Crisp, Appl. Phys. Lett., 21, 487 (1972).
[CrossRef]

H. Dupont, A. Donzel, J. Ernest, Appl. Phys. Lett. 11, 271 (1967).
[CrossRef]

IEEE J. Quantum Electron.

E. L. Kerr, IEEE J. Quantum Electron. QE-8, 723 (1972).
[CrossRef]

J. Am. Ceram. Soc.

W. Haller, N. N. Winogradoff, J. Am. Ceram. Soc. 54, 314 (1971).
[CrossRef]

J. Quantum Electron.

M. Bass, H. H. Barrett, J. Quantum Electron. QE-8, 338 (1972).
[CrossRef]

Opt. Commun.

M. D. Crisp, Opt. Commun. 6, 213 (1972).
[CrossRef]

Phys. Fluids

J. M. Dawson, Phys. Fluids 7, 981 (1964).
[CrossRef]

Sov. J. Opt. Technol.

O. A. Motovilov, O. G. Rudina, Sov. J. Opt. Technol. 35, 624 (1969) and V. V. Korobkin, private communication.

Sov. J. Quantum Electron.

V. V. Lyubimov, I. A. Fersman, L. D. Khazov, Sov. J. Quantum Electron. 1, 201 (1971).
[CrossRef]

Sov. Phys. Tech. Phys.

I. A. Fersman, L. D. Khazov, Sov. Phys. Tech. Phys. 15, 834 (1970).

Other

N. L. Boling, L. Spanoudis, P. R. Wengert, Semiannual Technical Report, ARPA Order 1441 (December1971).

N. L. Boling, R. W. Beck, in Glass Damage Threshold Studies, ASTM Special Technical Publication 356, A. J. Glass, A. Guenther, Eds., (AS, Philadelphia, 1971).

M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964), p. 38ff.

C. R. Guiliano, R. W. Hellwarth, G. R. Rickel, Semiannual Report 5, ARPA Order 1434 (January1972).

M. Bass, H. H. Barrett, L. H. Holoway, Scientific Report 1, ARPA Contract F19628–70-C-0223, ARPA Order 1434 AMD 1 (February1972).

E. Yblonovitch, N. Bloembergen, submitted to Phys. Rev. Lett., (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

This figure shows the apparatus used for the damage threshold measurements. The components are (1) neodymium glass laser oscillator, (2) Polaroid film, (3) neodymium glass laser amplifier chain, (4) thermopile, (5) photodiode, (6) Tektronix 519 oscilloscope, (7) neutral density filters, (8) 1.5-m focal length lens, (9) camera, (10) sample.

Fig. 2
Fig. 2

This figure shows the electric fields at the entrance and exit faces of a dielectric sample. The light is incident from the left at near normal incidence. The wave vectors of the light incident on and reflected from the entrance face are kI, and kR1, respectively. The wave vectors of the light that is incident on, reflected from, and transmitted through the exit face are kT, kR2, and kexit, respectively.

Fig. 3
Fig. 3

This figure illustrates the coordinate system used to analyze a surface damage experiment involving total internal reflection.

Fig. 4
Fig. 4

The ring structure shown in this figure is typical of damage for either the entrance or exit surface when the incident pulse is near threshold.

Fig. 5
Fig. 5

Entrance damage when the incident energy density is well above threshold.

Fig. 6
Fig. 6

Exit damage when the incident energy density is well above threshold.

Fig. 7
Fig. 7

This figure shows the experimental arrangement used to make a hologram of the cube at a variable time after passage of the damaging pulse.

Fig. 8
Fig. 8

This figure shows a photograph of the virtual image of a hologram of a 2.54-cm cube of ED-2 laser glass. The hologram was taken 1.4 μsec after a Q-switched-Nd-laser pulse passed through it from left to right causing a damage event.

Fig. 9
Fig. 9

This figure shows the appearance of a damaged cube 900 nsec after passage of the damaging pulse.

Fig. 10
Fig. 10

This figure shows the exit surface when a plasma is present. The light wave incident on the exit surface has an amplitude ET. The reflected wave has an amplitude ER, and the resultant wave at the interface was Eex.

Fig. 11
Fig. 11

This figure illustrates the notation used to describe the electric fields at the entrance face when a plasma is present. The incident electric field is EI, the reflected electric field ER and Eent is the resultant field at the interface.

Tables (1)

Tables Icon

Table I Laser Characteristics

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

E ent . = [ 2 / ( n + 1 ) ] E I ,
E exit = { 4 n / [ ( n + 1 ) 2 ] } E I ,
E ent . D = [ ( n + 1 ) / 2 ] E D
E exit D = { [ ( n + 1 ) 2 ] / 4 n } E D .
S ent . D / S exit D = 4 n 2 / [ ( n + 1 ) 2 ] .
E I = E 0 ( e ^ z sin θ + e ^ y cos θ ) cos ω [ t - ( y sin θ - z cos θ ) / c ] .
E ent . = [ 2 / ( n + 1 ) ] E I .
E T = 2 n + 1 E 0 ( e ^ z sin θ + e ^ y cos θ ) cos ω [ t - ( y sin θ - z cos θ ) n / c ] .
E R = 2 n + 1 E 0 ( e ^ z sin θ - e ^ y cos θ ) cos [ ω t - ( y sin θ + z cos θ ) ω n / c + δ p ] ,
tan ( δ p / 2 ) = - ( n 2 sin 2 θ - 1 ) 1 / 2 / cos θ .
E = 4 n + 1 E 0 [ e ^ z sin θ cos ( ω t - n ω c y sin θ + δ p 2 ) cos ( δ p / 2 ) + e ^ y cos θ sin ( ω t - n ω c y sin θ + δ p 2 ) sin ( δ p / 2 ) ] .
E T = 2 n + 1 E 0 e ^ x cos ω [ t - ( y sin θ - z cos θ ) n / c ] ,
E R = 2 n + 1 E 0 e ^ x cos [ ω t - ( y sin θ + z cos θ ) ω n / c + δ s ] ,
tan ( δ s / 2 ) = - ( n 2 sin 2 θ - 1 ) 1 / 2 / n cos θ .
E = 4 n + 1 E 0 e ^ x cos ( ω t - y sin θ n ω / c + δ s / 2 ) cos ( δ s / 2 ) .
E ent . D = ( n + 1 ) E D / 2 ,
E p D = { [ ( n + 1 ) ( n 2 - 1 ) 1 / 2 ] / 2 ( 2 ) 1 / 2 } E D
E s D = { [ ( n + 1 ) ( n 2 - 1 ) 1 / 2 ] / 2 ( 2 ) 1 / 2 n } E D
1 : [ ( n 2 - 1 ) / 2 ] : [ ( n 2 - 1 ) / 2 n 2 ] ,
U ent . D = ( n + 1 ) 2 U D / 4 ,
U p D = { [ ( n + 1 ) 2 ] / 8 } U D
U s D = { [ ( n + 1 ) 2 ( n 2 - 1 ) ] / 8 n 2 } U D
1 : ( 1 / 2 ) : [ ( n 2 - 1 ) / 2 n 2 ] .
E c = E 0 [ e ^ x cos ( ω t - k z ) + e ^ y sin ( ω t - k z ) ] .
U c = E 0 2 / 4 π .
E L = E 0 e ^ x cos ( ω t - k z )
U L = E 0 2 / 8 π ,
n p = ( 1 - w p 2 w 2 ) 1 / 2
E R / E T = ( n - n p ) / ( n p + n ) ,
E ex = E T + E R = ( 2 n E T ) / ( n p + n ) .
E R / E I = ( n p - n ) / ( n p + n )
E ent / E I = 2 n p / ( n p + n ) .

Metrics