Abstract

Thin film integrated optics components such as light guides, modulators, directional couplers, and polarizers demand high quality edge smoothness and high resolution pattern formation in dimensions down to submicrometer size. Fabrication techniques combining holographic and scanning electron beam lithography with ion beam micromachining have produced planar phase gratings with intervals as small as 2800 Å, guiding channel couplers in GaAs, and also wire- grid polarizers for 10.6-μm radiation.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, “Active Integrated Optics,” in Proceedings, 1971 Esfahan Conference on Pure and Applied Laser Physics (Wiley, New York), to be published.
  2. Many applications have been cited at the Symposia on the Deposition of Thin Films by Sputtering, sponsored by the University of Rochester and Bendix Corporation, Rochester, New York, held in 1966, 1967, and 1969, and at the Conference and School Sessions on the elements, techniques, and applications of sputtering sponsored by the Materials Research Corp., Orangeburg, New York.
  3. J. E. Groell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).
  4. H. L. Garvin, in Proceedings, 3rd Symposium on the Deposition of Thin Films by Sputtering (Bendix Corp., Rochester, N.Y.,1969), pp. 4–11.
  5. D. Marcuse, Bell Syst. Tech. J. 48, 3177 (1969).
  6. M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16 (12), 523 (1970).
    [CrossRef]
  7. H. Kogelnik, C. V. Shank, Appl. Phys. Lett. 18, 152 (1971).
    [CrossRef]
  8. S. Somekh, A. Yariv, Appl. Phys. Lett. 21, 140 (1972).
    [CrossRef]
  9. R. G. Brandes, R. K. Curran, Appl. Opt. 10, 2101 (1971).
    [CrossRef] [PubMed]
  10. E. D. Wolf, F. S. Ozdemir, W. E. Perkins, P. J. Coane, “Response of Elvacite 2041,” in Proc. 11th Symposium on Electron, Ion and Laser Beam Technology, R. F. M. Thorley, Ed. (San Francisco Press, San Francisco, 1970), pp. 331–336.
  11. E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).
  12. R. Shubert, J. H. Harris, J. Opt. Soc. Am. 61, 154 (1971). Also R. Ulrich, R. J. Martin, Appl. Opt. 10, 2077 (1971).
    [CrossRef] [PubMed]
  13. E. Garmire, H. Stoll, A. Yariv, R. G. Hunsperger, Appl. Phys. Lett. 21, 87 (1972).
    [CrossRef]
  14. R. D. Standley, W. M. Gibson, J. W. Rodgers, Appl. Opt. 11, 1313 (1972).
    [CrossRef] [PubMed]
  15. H. F. Taylor, W. E. Martin, D. B. Hall, V. N. Smiley, Appl. Phys. Lett. 21, 95 (1972).
    [CrossRef]
  16. S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, R. G. Hunsperger, Appl. Phys. Lett. 22, 46 (1973).
    [CrossRef]
  17. J. P. Auton, Appl. Opt. 6, 1023 (1967).
    [CrossRef] [PubMed]

1973 (1)

S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, R. G. Hunsperger, Appl. Phys. Lett. 22, 46 (1973).
[CrossRef]

1972 (4)

R. D. Standley, W. M. Gibson, J. W. Rodgers, Appl. Opt. 11, 1313 (1972).
[CrossRef] [PubMed]

S. Somekh, A. Yariv, Appl. Phys. Lett. 21, 140 (1972).
[CrossRef]

E. Garmire, H. Stoll, A. Yariv, R. G. Hunsperger, Appl. Phys. Lett. 21, 87 (1972).
[CrossRef]

H. F. Taylor, W. E. Martin, D. B. Hall, V. N. Smiley, Appl. Phys. Lett. 21, 95 (1972).
[CrossRef]

1971 (3)

1970 (1)

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16 (12), 523 (1970).
[CrossRef]

1969 (3)

J. E. Groell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

D. Marcuse, Bell Syst. Tech. J. 48, 3177 (1969).

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

1967 (1)

Auton, J. P.

Brandes, R. G.

Coane, P. J.

E. D. Wolf, F. S. Ozdemir, W. E. Perkins, P. J. Coane, “Response of Elvacite 2041,” in Proc. 11th Symposium on Electron, Ion and Laser Beam Technology, R. F. M. Thorley, Ed. (San Francisco Press, San Francisco, 1970), pp. 331–336.

Curran, R. K.

Dakss, M. L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16 (12), 523 (1970).
[CrossRef]

Garmire, E.

S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, R. G. Hunsperger, Appl. Phys. Lett. 22, 46 (1973).
[CrossRef]

E. Garmire, H. Stoll, A. Yariv, R. G. Hunsperger, Appl. Phys. Lett. 21, 87 (1972).
[CrossRef]

Garvin, H. L.

S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, R. G. Hunsperger, Appl. Phys. Lett. 22, 46 (1973).
[CrossRef]

H. L. Garvin, in Proceedings, 3rd Symposium on the Deposition of Thin Films by Sputtering (Bendix Corp., Rochester, N.Y.,1969), pp. 4–11.

Gibson, W. M.

Groell, J. E.

J. E. Groell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

Hall, D. B.

H. F. Taylor, W. E. Martin, D. B. Hall, V. N. Smiley, Appl. Phys. Lett. 21, 95 (1972).
[CrossRef]

Harris, J. H.

Heidrich, P. F.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16 (12), 523 (1970).
[CrossRef]

Hunsperger, R. G.

S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, R. G. Hunsperger, Appl. Phys. Lett. 22, 46 (1973).
[CrossRef]

E. Garmire, H. Stoll, A. Yariv, R. G. Hunsperger, Appl. Phys. Lett. 21, 87 (1972).
[CrossRef]

Kogelnik, H.

H. Kogelnik, C. V. Shank, Appl. Phys. Lett. 18, 152 (1971).
[CrossRef]

Kuhn, L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16 (12), 523 (1970).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

Marcuse, D.

D. Marcuse, Bell Syst. Tech. J. 48, 3177 (1969).

Martin, W. E.

H. F. Taylor, W. E. Martin, D. B. Hall, V. N. Smiley, Appl. Phys. Lett. 21, 95 (1972).
[CrossRef]

Ozdemir, F. S.

E. D. Wolf, F. S. Ozdemir, W. E. Perkins, P. J. Coane, “Response of Elvacite 2041,” in Proc. 11th Symposium on Electron, Ion and Laser Beam Technology, R. F. M. Thorley, Ed. (San Francisco Press, San Francisco, 1970), pp. 331–336.

Perkins, W. E.

E. D. Wolf, F. S. Ozdemir, W. E. Perkins, P. J. Coane, “Response of Elvacite 2041,” in Proc. 11th Symposium on Electron, Ion and Laser Beam Technology, R. F. M. Thorley, Ed. (San Francisco Press, San Francisco, 1970), pp. 331–336.

Rodgers, J. W.

Scott, B. A.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16 (12), 523 (1970).
[CrossRef]

Shank, C. V.

H. Kogelnik, C. V. Shank, Appl. Phys. Lett. 18, 152 (1971).
[CrossRef]

Shubert, R.

Smiley, V. N.

H. F. Taylor, W. E. Martin, D. B. Hall, V. N. Smiley, Appl. Phys. Lett. 21, 95 (1972).
[CrossRef]

Somekh, S.

S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, R. G. Hunsperger, Appl. Phys. Lett. 22, 46 (1973).
[CrossRef]

S. Somekh, A. Yariv, Appl. Phys. Lett. 21, 140 (1972).
[CrossRef]

Standley, R. D.

R. D. Standley, W. M. Gibson, J. W. Rodgers, Appl. Opt. 11, 1313 (1972).
[CrossRef] [PubMed]

J. E. Groell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

Stoll, H.

E. Garmire, H. Stoll, A. Yariv, R. G. Hunsperger, Appl. Phys. Lett. 21, 87 (1972).
[CrossRef]

Taylor, H. F.

H. F. Taylor, W. E. Martin, D. B. Hall, V. N. Smiley, Appl. Phys. Lett. 21, 95 (1972).
[CrossRef]

Wolf, E. D.

E. D. Wolf, F. S. Ozdemir, W. E. Perkins, P. J. Coane, “Response of Elvacite 2041,” in Proc. 11th Symposium on Electron, Ion and Laser Beam Technology, R. F. M. Thorley, Ed. (San Francisco Press, San Francisco, 1970), pp. 331–336.

Yariv, A.

S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, R. G. Hunsperger, Appl. Phys. Lett. 22, 46 (1973).
[CrossRef]

E. Garmire, H. Stoll, A. Yariv, R. G. Hunsperger, Appl. Phys. Lett. 21, 87 (1972).
[CrossRef]

S. Somekh, A. Yariv, Appl. Phys. Lett. 21, 140 (1972).
[CrossRef]

A. Yariv, “Active Integrated Optics,” in Proceedings, 1971 Esfahan Conference on Pure and Applied Laser Physics (Wiley, New York), to be published.

Appl. Opt. (3)

Appl. Phys. Lett. (6)

H. F. Taylor, W. E. Martin, D. B. Hall, V. N. Smiley, Appl. Phys. Lett. 21, 95 (1972).
[CrossRef]

S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, R. G. Hunsperger, Appl. Phys. Lett. 22, 46 (1973).
[CrossRef]

E. Garmire, H. Stoll, A. Yariv, R. G. Hunsperger, Appl. Phys. Lett. 21, 87 (1972).
[CrossRef]

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16 (12), 523 (1970).
[CrossRef]

H. Kogelnik, C. V. Shank, Appl. Phys. Lett. 18, 152 (1971).
[CrossRef]

S. Somekh, A. Yariv, Appl. Phys. Lett. 21, 140 (1972).
[CrossRef]

Bell Syst. Tech. J. (3)

J. E. Groell, R. D. Standley, Bell Syst. Tech. J. 48, 3445 (1969).

D. Marcuse, Bell Syst. Tech. J. 48, 3177 (1969).

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

J. Opt. Soc. Am. (1)

Other (4)

H. L. Garvin, in Proceedings, 3rd Symposium on the Deposition of Thin Films by Sputtering (Bendix Corp., Rochester, N.Y.,1969), pp. 4–11.

A. Yariv, “Active Integrated Optics,” in Proceedings, 1971 Esfahan Conference on Pure and Applied Laser Physics (Wiley, New York), to be published.

Many applications have been cited at the Symposia on the Deposition of Thin Films by Sputtering, sponsored by the University of Rochester and Bendix Corporation, Rochester, New York, held in 1966, 1967, and 1969, and at the Conference and School Sessions on the elements, techniques, and applications of sputtering sponsored by the Materials Research Corp., Orangeburg, New York.

E. D. Wolf, F. S. Ozdemir, W. E. Perkins, P. J. Coane, “Response of Elvacite 2041,” in Proc. 11th Symposium on Electron, Ion and Laser Beam Technology, R. F. M. Thorley, Ed. (San Francisco Press, San Francisco, 1970), pp. 331–336.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the duoplasmatron ion beam sputtering system.

Fig. 2
Fig. 2

Planar grating coupler with 1000-Å grooves ion beam machined into an optical waveguide. Periodicity is 3700 Å.

Fig. 3
Fig. 3

(a) Holographic exposure of photoresist. (b) Ion machining of photoresist after development.

Fig. 4
Fig. 4

Cross section of grating pattern (0.41-μm periodicity) in GaAs. Scanning electron microscope magnification is 55,000×.

Fig. 5
Fig. 5

SEM photographs of (a) 1.4-μm grating in GaAs, and (b) 0.28-μm grating in Si.

Fig. 6
Fig. 6

SEM photographs of the gold mask on the GaAs substrate, used in the fabrication of the directional couplers. The remains of the photoresist that defines the channels when the gold mask is machined can be seen on top of the gold stripes. (a) Magnification 2100×, (b) magnification 10,400×.

Fig. 7
Fig. 7

Scribed metal photomask of optical guide pattern. Guide width is 10 μm.

Metrics