Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Esposito, Proc. IEEE 55, 1533 (1967).
    [Crossref]
  2. J. I. Marcum, “Table of Q Functions,” AD 116551, 1January1950.
  3. F. Bowman, Introduction to Bessel Functions (Dover, New York, 1958), p. 41.
  4. M. Abramowitz, I. A. Stegun, Eds. Handbook of Mathematical Functions, N.B.S. Applied Mathematics Series55November, 1970, p.930.
  5. M. Tycz, M. W. Fitzmaurice, D. A. Premo, “Optical Communication System Performance with Tracking Error Induced Signal Fading” to be published.
  6. D. L. Fried, R. A. Schmeltzer, Appl. Opt. 6, 1729 (1967).
    [Crossref] [PubMed]

1967 (2)

1950 (1)

J. I. Marcum, “Table of Q Functions,” AD 116551, 1January1950.

Bowman, F.

F. Bowman, Introduction to Bessel Functions (Dover, New York, 1958), p. 41.

Esposito, R.

R. Esposito, Proc. IEEE 55, 1533 (1967).
[Crossref]

Fitzmaurice, M. W.

M. Tycz, M. W. Fitzmaurice, D. A. Premo, “Optical Communication System Performance with Tracking Error Induced Signal Fading” to be published.

Fried, D. L.

Marcum, J. I.

J. I. Marcum, “Table of Q Functions,” AD 116551, 1January1950.

Premo, D. A.

M. Tycz, M. W. Fitzmaurice, D. A. Premo, “Optical Communication System Performance with Tracking Error Induced Signal Fading” to be published.

Schmeltzer, R. A.

Tycz, M.

M. Tycz, M. W. Fitzmaurice, D. A. Premo, “Optical Communication System Performance with Tracking Error Induced Signal Fading” to be published.

AD 116551 (1)

J. I. Marcum, “Table of Q Functions,” AD 116551, 1January1950.

Appl. Opt. (1)

Proc. IEEE (1)

R. Esposito, Proc. IEEE 55, 1533 (1967).
[Crossref]

Other (3)

F. Bowman, Introduction to Bessel Functions (Dover, New York, 1958), p. 41.

M. Abramowitz, I. A. Stegun, Eds. Handbook of Mathematical Functions, N.B.S. Applied Mathematics Series55November, 1970, p.930.

M. Tycz, M. W. Fitzmaurice, D. A. Premo, “Optical Communication System Performance with Tracking Error Induced Signal Fading” to be published.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Simultaneous wander and scintillation power fluctuations.

Tables (1)

Tables Icon

Table I Criterion for the Wander Parameter Remaining ≤ 0.1 for Various Beam Divergences

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y , ζ , η ) exp - 2 { [ ( x - ζ ) 2 + ( y - η ) 2 ] / w 2
P ( r , w , ρ ) = I ( x , y , ρ ) d x d y x 2 + y 2 < r 2 = 1 - Q ( ρ / w , r / w )
Q ( a , b ) = Marcum ' s Q Function 2 , Q ( a , b ) = b t exp [ - ( t 2 + a 2 ) / 2 ] I 0 ( a t ) d t
f ( ρ ) = ( 2 ρ / ρ 2 ¯ ) exp ( - ρ 2 / ρ 2 )
f ( P ) = 2 w 2 ρ 2 ¯ r exp ( r 2 w 2 ) ( ρ exp { - [ ( 1 / ρ 2 ¯ ) - ( 1 / 2 w 2 ) ] ρ 2 } I 1 ( ρ r / w 2 ) )
P n ¯ = P n f ( P ) d P .
f ( P ) = 1 2 α P 0 ( P P 0 ) 1 2 α - 1
α = ρ 2 ¯ / w 2 .
P r ( P < P x ) = ( P x / P 0 ) 1 2 α .
P ¯ = P 0 / ( 1 + 2 α ) ,
σ p 2 ¯ = ( P 2 ¯ - P 2 ¯ ) / P 2 ¯ = 4 α 2 / ( 4 α + 1 ) ,
RIPPLE = 2 α ( 4 α + 1 ) 1 / 2 × 100 % .
α = ρ 2 ¯ / w 2 = 4 ( ϕ / θ ) 2 .
σ p 2 ¯ = exp [ 4 C l ( 0 ) ] - 1

Metrics