Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Fried, H. T. Yura, J. Opt. Soc. Am. 62, 600 (1972).
    [CrossRef]
  2. R. L. Kurtz, J. L. Hayes, “Experimental Measurement of Optical Angular Deviation Caused by Atmospheric Turbulence and Refraction,” NASA Technical Note, NASA TN D-3439, May1966.

1972 (1)

Fried, D. L.

Hayes, J. L.

R. L. Kurtz, J. L. Hayes, “Experimental Measurement of Optical Angular Deviation Caused by Atmospheric Turbulence and Refraction,” NASA Technical Note, NASA TN D-3439, May1966.

Kurtz, R. L.

R. L. Kurtz, J. L. Hayes, “Experimental Measurement of Optical Angular Deviation Caused by Atmospheric Turbulence and Refraction,” NASA Technical Note, NASA TN D-3439, May1966.

Yura, H. T.

J. Opt. Soc. Am. (1)

Other (1)

R. L. Kurtz, J. L. Hayes, “Experimental Measurement of Optical Angular Deviation Caused by Atmospheric Turbulence and Refraction,” NASA Technical Note, NASA TN D-3439, May1966.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Prob ( θ < ϑ < θ + d θ ) = P 1 ( θ ) d θ ,
P 1 ( θ ) = ( 2 π σ 2 ) - 1 exp ( - 1 2 θ 2 / σ 2 ) .
Prob ( θ < θ < θ + d θ ) = P 2 ( θ ) d θ ,
P 2 ( θ ) = ( θ / σ 2 ) exp ( - 1 2 θ 2 / σ 2 ) ,
I = I 0 exp ( - 1 2 θ 2 / α 2 ) ,
θ ˜ 2 = - 2 α 2 ln ( I ˜ / I o ) ,
d θ ˜ = ( α 2 / θ ˜ I ˜ ) d I ˜ .
Prob ( I ˜ < G < I ˜ + d I ˜ ) = Prob ( θ ˜ > ϑ > θ ˜ + d θ ˜ ) .
Prob ( I ˜ < G < I ˜ + d I ˜ ) = P 3 ( I ˜ ) d I ˜ ,
Prob ( θ ˜ > ϑ > θ ˜ + d θ ˜ ) = ( θ ˜ / σ 2 ) exp ( - 1 2 θ ˜ 2 / σ 2 ) ( - d θ ˜ ) = α 2 σ 2 I ˜ - 1 exp [ ( α 2 / σ 2 ) ln ( I ˜ / I 0 ) ] d I ˜ .
P 3 ( I ) = { ( α 2 / σ 2 ) I - 1 exp [ ( α 2 / σ 2 ) ] ln ( I / I 0 ) ] , if 0 < I < I 0 0 , if I > I 0 or I > 0 ,
P 3 ( I ) = { ( α / σ ) 2 ( I / I 0 ) ( α / σ ) 2 / I , if 0 < I < I 0 0 , if I < 0 or I > I o .
L = ln ( I / I o ) ,
d L = d I / I .
Prob ( L < L < L + d L ) = Prob ( I < G < I + d I ) .
Prob ( L < L < L + d L ) = P 4 ( L ) d L ,
P 4 ( L ) d L = { ( α 2 / σ 2 ) I - 1 exp [ ( α 2 / σ 2 ) ln ( I / I 0 ) ] d I , if 0 < I < I 0 0 , if I > I 0 or I > 0.
P 4 ( L ) = { ( α 2 / σ 2 ) exp [ ( α 2 / σ 2 ) L ] if L < 0 0 if L > 0.

Metrics